

Update on International GNSS Service (IGS) Multi-GNSS Activities and Plans

Urs Hugentobler

Chair, IGS Governing Board Technische Universität München

ICG WG-A Session 4, 25. July 2012, Olsztyn, Poland

The International GNSS Service (IGS)

- Operations since 20 years
- Internationally distributed voluntary organization of more than 200 institutions.
- Originally a pure GPS service.
- CfP for International GLONASS Experiment (IGEX) in 1998. Resulted in GLONASS Pilot Project. 2003 GLONASS fully incorporated into IGS.
- 2005 renamed into International GNSS Service.
- Operating today a global tracking network of more than 350 active stations, among them 140 GPS/GLONASS stations.

Experience of the IGS

- GNSS data analysis, determination of highest quality orbits, clock corrections and site coordinates.
- IGS contribution is pivotal for realizing and making accessible of the ITRF as metrological basis for monitoring of processes in the Earth system.
- Definition of international standards, e.g., concerning formats (RINEX, ANTEX, SINEX, ...), site guidelines, ...
- Involved in definition of real time formats and protocols with RTCM.
- Monitoring of differential code biases (GPS and GLONASS) as part of clock and ionosphere parameter determination and ambiguity resolution.
- Determination of IGS Time Scale.

Current Developments

- New orbit and clock combination software ACC 2.0:
 - Multi-GNSS capable, interchangeable
 - Orbits and clocks in common well defined reference frame (ITRF)
- Provision of uncalibrated phase delays for ambiguity resolution.
- Launch of Real-time Service this year, GPS-only but goal is Multi-GNSS.
- Transition to Multi-GNSS capable format RINEX 3.0x.
- Multi-GNSS Experiment.

Real-Time Network

- IGS prepares for the consistent incorporation of new GNSS into one single reference.
- Goal of M-GEX
 - Experiment to operate an expanded network of new receivers capable of tracking new signals in addition to GPS & GLONASS
 - Support JAXA Multi-GNSS proposal activities
- Tasks
 - Set-up tracking network of Multi-GNSS equipment
 - Make tracking data publicly available
 - Experiment with data flow and signals, qualify equipment, signals, ...
- Goal: Seamless transition to a multi-GNSS global tracking network and making available fully combined and consistend multi-GNSS products.

Multi-GNSS

http://igs.org

RINEX 3.0 Observation File

3.00			OBSERVATION DATA				М	M (MIXED) RII				NEX VERSION / TYPE								
Bnx	3nx2Rnx congo					20:	12030	9 08	32056	5 GMT	PGM	/	RU	'N	BY ,	DATE				
Source NTRIP stream gnss.gsoc.dlr.d					de/GMSD1						COMMENT									
GMSD1												MARKER NAME								
	М											MARKER NUMBER								
Hau	Hauschild DLR/GSOC											OBSERVER / AGENCY								
5049K72188				TR	IMBLI	E NE	rr9		4.43						REC # / TYPE / VERS					
493	4938353448 TRM59800.0				0.00	0 SCIS							ANT	#	/	ΤY	PE			
-3607665.0563 4				414	4786	7.728	38 3	3223'	/16.9486					APPROX POSITION XYZ						
		0.0	0000		().00 (0		0.0	0000					ANTI	ENN	JA :	D	ELT	A H/E/N
G	16	C1C	L1C	D1C	S1C	C2X	L2X	D2X	S2X	C2W	L2W	D2W	S2W	C5X	SYS	/	#	/	OBS	TYPES
		l5x	D5X	s5x											SYS	/	#	/	OBS	TYPES
R	20	C1C	L1C	D1C	S1C	C2C	L2C	D2C	S2C	C1P	L1P	D1P	S1P	C2P	SYS	/	#	/	OBS	TYPES
		L2P	D2P	S2P	СЗХ	l3x	D3X	s3x							SYS	/	#	/	OBS	TYPES
Е	16	C1X	L1X	D1X	S1X	C5X	l5X	D5X	S5X	C7X	L7X	D7X	S7X	C8X	SYS	/	#	/	OBS	TYPES
		L8X	D8X	S8X											SYS	/	#	/	OBS	TYPES
S	8	C1C	L1C	D1C	S1C	C5X	l5x	D5X	S5X						SYS	/	#	/	OBS	TYPES
С	12	C2I	L2I	D2I	S2I	C6I	L6I	D6I	S6I	C7I	L7I	D7I	S7I		SYS	/	#	/	OBS	TYPES
J	24	C1C	L1C	D1C	S1C	C1X	L1X	D1X	S1X	C1Z	L1Z	D1Z	S1Z	C2X	SYS	/	#	/	OBS	TYPES
		L2X	D2X	s2x	C6X	L6X	D6X	S6X	C5X	L5X	D5X	s5x			SYS	/	#	/	OBS	TYPES
															-					
		· · ·	many	new	obser	vatior	ו type	es												

new systems

http://igs.org

M-GEX Network

http://igs.org

IGS Working Groups and Working Groups

	How to convert IGS							
Working Groups	network to multi-GNSS?							
Data Center WG	Radiation pressure modelling							
Reference Frame WG	for new satellites?							
Tide Gauges WG	Clock products for new							
Space Vehicle Orbit Dynamics WG	signals?							
Clock Product WG	Incorporate new GNSS							
Troposphere WG								
Ionosphere WG	New Systems and Signals							
Antenna WG	patterns for new frequencies							
Bias and Calibration WG	biases of new signals							
GNSS WG	new systems (M-GEX)							
RINEX WG	ODSERVATION FORMAT (RINEX 3.0)							
Real Time Pilot Project	Real Time Products							

http://igs.org

- About 45 stations providing data, many also as real-time streams, soon about 55 stations.
- A number of formatting issues under investigation (file naming, satellite number assignments, ...). RINEX 3.0x working document.
- Understanding of equipment (performance of receivers and antennas), signals (biases and clocks), spacecraft behavior (attitude, antennas, radiation pressure).
- Results from data analysis is presented at the workshop:
 - Data availability and completeness
 - Zero baseline tests
 - Estimation of orbits and clocks (QZSS, Compass, Galileo IOV).
- Continuation of M-GEX, definition of short-term goals and dedicated experiments by the Working Group.

Conclusions

- Much experience in handling and processing of GNSS data is available in the IGS.
- IGS key projects are M-GEX and Real-Time Service.
- M-GEX continues with the goal to transition IGS to a true multi-GNSS service and to set the associated standards.
- We appreciate the high quality signals available in space and we want to make full use of them to the extent possible.
- The discussions and exchange in this forum are an opportunity.