

A focus on estimated coseismic displacements using IGS weekly station positions

Daphné Lercier¹, Zuheir Altamimi¹, Xavier Collilieux¹, Christophe Vigny² ¹IGN, LAREG, 6 avenue Blaise Pascal 77420 Champs-sur-Marne, France ; GRGS. ²Laboratoire de géologie, UMR 8538, Ecole Normale Supérieure, Paris, France.

Introduction

GÉOGRAPHIQU

+++

+++

Nine analysis centers (ACs) compute operational solutions based on different networks of stations. Their solutions are then combined to form a single set of products, the official IGS solution.

Code	Description	Software	
COD	Center for Orbit Determination in Europe, Switzerland	BERNESE	
EMR	Natural Resources Canada, Canada	GIPSY/OASIS II	
ESA	European Space Operations Center, Germany	NAPEOS	
GFZ	GeoForschungsZentrum, Germany	EPOS.P.V2	
GRG	GRGS-CNES/CLS, France	GINS/DYNAMO	
JPL	Jet Propulsion Laboratory, USA	GIPSY/OASIS II	
MIT	Massachusetts Institute of Technology, USA	GAMIT/GLOBK	
NGS	NOAA / NGS, USA	PAGES/GPSCOM	
SIO	Scripps Institution of Oceanography, USA	GAMIT/GLOBK	

Tab.1 IGS Analysis Centers (ACs).

Are there differences between coseismic offsets estimated by different ACs?

(blue triangle) around 3 last great earthquakes.

Positions calculated by ACs

The IGS analysis centers choose for every station the weekdays for which data are used to produce their weekly solution. When an earthquake affects a station, ACs may reject GPS observations. Three classes of coordinates can be derived :

• AC keeps weekdays before the earthquake. The weekly coordinates reflect the **pre-seismic deformation**, **②** AC keeps **all weekdays**. The weekly coordinates are an **ave-**

rage position,

③ AC keeps weekdays after the earthquake. The weekly coordinates are a position resulting from coseismic and first days postseismic deformations.

of weekdays (in gray) to compute a weekly coordinate of a station in case of an earthquake on day 4. (b) Position of this solution in the seismic cycle [1].

Residuals of ACs weekly solutions w.r.t IGS combined solution C

In average, the AC solutions agree currently with IGS combination at levels of 1 to 3 mm in horizontal components and 2 to 6 mm in vertical [2]. But it is frequent to observe **differences which** can reach 1 cm the week of an earthquake or the week after. They are mostly explained by the different selection of weekdays used by each AC. The weekdays used are reported in the analysis summaries of all ACs, except NGS.

	1572	1573	15	
AC	012345 <mark>6</mark>	0123456		
COD	XXXXXXX		- 10 –	
EMR	XXXXXX	XXXX	Ê 5 -	
ESA	XXXXXX	XXXXX	als (m	
GFZ	XXXXXX	XXXXXXX	esidu	
GRG	XXXXXX	X XXXX	East -	
JPL	XXXX			
MIT	XXXXXX	XXXXXX	-10 - COD	
SIO	XXXXXX	XXXXX	-15	
↑ earthquake				

Fig.3 Station in Concepcion (CONZ) / 2010 Mw 8.8 Maule earthquake (1572:6).

			_	15
	1626	1627	-	
AC	01234 <mark>56</mark>	0123456		10 —
COD	XXXXXX	XXXXXXX	E	5 –
EMR	XXXXXXX	XXXXXXX	als (m	***
GFZ	XXXXXXX	XXXXXXX	esidue	0
JPL	XXXXX	X XXX	East re	-5 -
MIT	XXXXXXX	XXXXXXX		
SIO	XXXXXXXX	XXXXXXX		-10 COD
\uparrow earthquake				-15

Fig.4 Station in Daejeon (DAEJ) / 2011 Mw 9.0 Tohoku earthquake (1626:5).

	1683	1684	-	¹⁵	l
AC	0123456	0123456		10 -	14
COD	Х	XXXXX	-	_	
EMR	XXXX	X XX	mm)	5 -	
ESA	XXXXXXX	XXXXXXX	iduals	0	
GFZ	XXXXXXX	XXXXXXX	ist res	-	
GRG	XXXXXXX	XXXXXXX	Ш	-5 -	
MIT	XXXXXXX	XXXXXXX		-10	COD -
SIO	XXXXXXX	XXXXXXX		-15	ESA
	\uparrow earthq	uake	-	167	2 167

Fig.5 Station in Singapore (NTUS) / 2012 Mw 8.6 Sumatra earthquake (1683:3).

A significant **residual coseismic offset** has also been observed for KHAJ, even if all weekdays were used by all ACs on week 1626. This may indicate a software-dependent sensitivity to abrupt position changes.

Fig.6 Station in Khabarovsk (KHAJ) / 2011 Mw 9.0 Tohoku earthquake (1626:5).

Contact : daphne.lercier@ign.fr

IGS Workshop 2012

• For each station and each AC, we compute the difference between residual at the week of the earthquake and the mean residual over 20 weeks (except the week of the earthquake). 00 1500 1600 1700 1800 Distance (km)

Fig.7 Differences between residual at the week of the earthquake and the mean residual for stations affected by the Sumatra earthquake and processed by ACs.

Global results :

Number of stations stud Number of stations for v a solution over 20 wee Number of stations proc ... and for which max. Number of stations clea

• When an earthquake occurs, many stations near the epicenter are also removed during the combination or during the final stacking

Conclusion

With the switch to daily IGS solutions in September 2012, this problem will remain, but at the level of one day. Improvements of the IGS combined solutions could still be obtained by: • verifying the ACs' epoch-block solutions before combination, • defining common AC processing strategies. The major difficulty is to identify the stations affected by an earthquake because this step must be made in quasi real time by ACs. One alternative could be **to develop a warning system** which lists stations probably affected when an earthquake is detected by USGS.

References

died	63
which we have	
eks around the earthquake	30
cessed by 5 ACs at least	
$_{\{E,N\}}(res(t_{eqk}) - \overline{res}) > 2 \text{ mm}$	10
rly disturbed by an earthquake	10

[1] Feigl K. L. and Thatcher W. Geodetic observations of post-seismic transients in the context of the earthquake deformation cycle In C. R. Geoscience (2006). Rebischung P. and Garayt B. Recent results from the IGS terrestrial frame combinations, In *Proceedings of the IAG Symposium* (2011). REFAG2010.