
Introduction 
Abstract 
One of the objectives of TIGA is to compute precise station coordinates and velocities for GPS 

stations of interest. Consequently, a comprehensive knowledge of the stochastic features of the 

GPS time series noise is crucial, as it affects the velocity estimation for each GPS station. For 

that, we present a Monte Carlo Markov Chain (MCMC) method to simultaneously estimate the 

velocities and the stochastic parameters of the noise in GPS time series. This method allows to 

get a sample of the likelihood function and thereby, using Monte Carlo integration, all parameters 

and their uncertainties are estimated simultaneously. 

We propose this method as an alternative to optimization methods, such as the Maximum 

Likelihood Estimator (MLE) method implemented in the widely used CATS software, whenever the 

likelihood and the parameters  of the noise are to be estimated in order to obtain more realistic 

uncertainties for all parameters involved. Furthermore, we assess the MCMC method through 

comparison with the widely used CATS software using daily height time series from the British 

Isles continuous GNSS Facility (BIGF) level 2 products. 

  

Conclusions 

 

The preliminary results of this study suggest: 
1. MCMC and CATS generally give rate estimates that are in good agreement at the sub-millimetre per year 

level.  

2. Compared to MCMC, CATS underestimates the spectral indices and the coloured power amplitudes for 

all the stations but MAS1. 

3. For DRAO, for which the white noise component was absorbed into the coloured noise component by 

CATS, MCMC provides larger rate uncertainties. 

4. The biggest disagreements between both methods stem from cases where time series showed non-linear 

behaviour (IISC) or were mis-modelled (GUAT). 
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A Metropolis-Hasting algorithm is used to get a sample of the a posteriori distribution that, according 

to Bayes Theorem, is related to the Likelihood: 

 

 𝑃 𝜃 𝑦 =
𝐿 𝑦 𝜃 𝑃 𝜃 

𝑃 𝑦
 

 

where, 𝑃 𝜃  and 𝑃 𝑦  are the a priori distributions of the estimated parameters and the data. 

Concerning the parameters we have chosen an uniform distribution for them, whereas it is not 

necessary to know 𝑃 𝑦  for our algorithm. Thus the MCMC method provides histograms for all 

parameters (including the spectral index) and cross-correlation between these can be easily 

visualized with 2D histograms. An example is given in Fig. 2 where histograms for the spectral index 

(Fig. 2a) and the power amplitude (Fig. 2b) are shown for the GPS station FRAE in the UK. For the 

same station, Fig. 2c. shows how 2D histograms help to detect cross-correlations (for that case 

between coloured and white noise power amplitudes). 

The likelihood of getting the observational data given 

some parameters is defined as:  
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• 𝑦 : Observational data 

• 𝑦  : Model data 

• 𝜃 : Parameter 

• 𝐶 : Covariance matrix 

Maximum Likelihood Estimator Monte Carlo Markov Chain (MCMC) The MCMC algorithm 

 

1) Compute the likelihood at  𝜃𝑖, i.e.  𝐿𝑖 ≡ 𝐿 𝑦 𝜃𝑖 . 

2) Take a random step in parameter space to 

obtain a new value for the parameter 𝜃𝑖+1. The 

probability distribution of the step is taken to be 

Gaussian  centered over 𝜃𝑖 with variance  𝜎𝜃. 

3) Compute 𝐿𝑖+1. 

4) If 𝐿𝑖+1 𝐿𝑖 > 1 , take the step, i.e. save the new 

set of parameters  𝜃𝑖+1 and 𝐿𝑖+1 as part of the 

chain, then go to step 2 after the substitution  

𝜃𝑖 → 𝜃𝑖+1. 

5) If 𝐿𝑖+1 𝐿𝑖 < 1 , draw a random number 𝑥 ∈ 0,1  

from a uniform distribution. If 𝐿𝑖+1 𝐿𝑖 < 𝑥 , do not 

take the step, i.e. keep the previous parameter 

value as part of the chain and return to step 2. If  

𝐿𝑖+1 𝐿𝑖 > 𝑥 , take the step, i.e. do as in 4. 

 

Rule 4 leads the Markov chain towards the 

maximum of the Likeilihood (and the a posteriori 

distribution) . In order to get a sample of  it we 

allow the  chain to explore the region  around the 

maximum by including rule 5. Thus, once a sample 

of 𝑃 𝜃 𝑦  is obtained, we proceed to estimate the 

parameters by means of Monte Carlo integration. 

 

The parameters that better fit the data are 

estimated 

by computing the maximum of the likelihood: 

 

𝜃 ≡ arg  𝑚𝑎𝑥 𝐿  

 

Very often there is no closed-form formula for the  

Likelihood function  and numerical computation is 

needed. 

For that purpose CATS has been developed 

(Williams 2008).. 
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We have analyzed 10 stations from the BIGF Level 2 

products with  CATS1 and MCMC2 software in order to 

obtain parameters such as the rate, the intercept and 

the amplitudes of annual and semi-annual signals. In 

both analysis it has been assumed that the noise signal 

is composed by time-correlated (coloured) and random 

(white) noise. We have estimated the spectral index 

and the power amplitudes of both noise components 

simultaneously with the aforementioned parameters. 

Both methods estimate similar rates but as MCMC 

estimates the uncertainty associated to the spectral 

index (whereas CATS does not) the uncertainties for 

the parameters are different.  

 

Preliminary results: 
 

 

Fig. 3 shows the differences between the estimates obtained from 

CATS and MCMC for the spectral index (Fig. 3a), the relative 

differences for the power amplitude (Fig. 3b), the rate of the GPS 

station (Fig. 3c) and its uncertainty (Fig. 3d). 

 

Fig. 3a shows that the MCMC estimate for the spectral index 

estimate is higher than that provided by CATS for all GPS stations 

but  MAS1. Note that  for DRAO the large difference stems from 

CATS absorbing the white noise component into the power-law 

noise, thereby yielding a lower spectral index for the power-law 

noise. 

  

Fig. 3b shows that the power amplitude for the coloured noise is also 

higher than the counterpart provided by CATS. Namely, the relative 

difference of the power amplitude for DRAO is around 40%. Figs. 3a 

and 3b suggest that the larger the difference in the spectral index 

estimates, the larger the difference in the power amplitude estimates. 

 

Although not shown, the rate estimates agree on the sub-millimetre 

per year level with the largest rate difference of 0.9 mm/yr for IISC. 

Fig. 3c shows that the range for the relative difference in the rate 

estimates is quite large, going from 0.3% (MAS1) to 227% (IISC) and 

230% (GUAT). Note that the absolute rate difference for GUAT is 0.3 

mm/yr. For DRAO, the station for which CATS absorbs the white 

noise into the coloured noise component, the estimated rate 

according to MCMC is 60% larger than the one obtained with CATS. 

Methodology: 

 
For all stations we have considered the Up coordinate 

only. 

We have estimated the following parameters: 

• The spectral index 𝛼. 

• The power amplitude for the colored noise 𝜎𝑝𝑙  and 

the white noise 𝜎𝑤𝑛. 

• The rate 𝑣. 

• The intercept 

As all time series are at least eight years in length, we 

do not model any periodic terms, as the effect on the 

rate estimates is negligible (Blewitt and Lavallee, 

2002; Bos et al., 2010). 

The estimate for the parameter 𝜃𝑖  is obtained by 

Monte Carlo integration, i.e.  

𝜃 𝑖 =  𝑃 𝜃 𝑦 𝜃𝑖 𝑑𝜃 =
 𝜃𝑡,𝑖
𝑀
𝑡=1

𝑀
 

where the sum is along the Markov chain and 𝑀 

stands for its length. 

 

 The noise analysis 

 
Following Zhang et al. (1997) and  Williams (2004, 

2008) , we have considered the covariance of the signal 

to be a combination of white noise and coloured noise 

(a.k.a. power-law noise) 

 
𝐶𝑜𝑣 = 𝜎𝑤𝑛𝐼 + 𝜎𝑝𝑙𝐿𝐿

′ 

 

Where 𝜎𝑤𝑛 and 𝜎𝑝𝑙 are the power amplitudes for the 

white noise and the power law noise, respectively; 𝐼 is 

the identity matrix and 𝐿 is a lower triangular matrix in 

the form of: 

 

𝐿𝑖𝑗 =  

𝑖 − 𝑗 + 𝛼 2 + 1 !

𝑖 − 𝑗 ! 𝛼 2 − 1 !
, ∀ 𝑖 − 𝑗 ≥ 0

0, ∀ 𝑖 − 𝑗 < 0

 

 

Fig. 3d clearly shows that absorbing the white noise into the coloured noise component within the time series leads to an underestimated 

rate uncertainty. Indeed, for DRAO, the uncertainty computed by MCMC is almost 160% higher. In Fig. 3d the rate uncertainties for GUAT 

and IISC estimated by CATS are clearly larger (>200%) than those from MCMC. These differences between the MCMC and CATS 

estimates in GUAT and IISC stem from, firstly, the fact that their time series show non-linear behaviour (Fig. 4a), and secondly, from 

inadequate modelling  of the time series (i.e. not accounting for offsets) (Fig. 4b). For   IISC, according to CATS, the rate is -0.38 mm/yr, 

whereas, from MCMC, it is 0.42 mm/yr (Fig. 4a). Fig. 4b shows how an offset (vertical black line at epoch 2008.6), that was not taken into 

account, leads to a discrepancy between the rate estimates. Based on these preliminary results, the MCMC and CATS methods agree very 
well for time series with linear behaviour and when correctly modelled.  
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Figure 1.  Selected GPS stations  
from the BIGF. 

Figure 2.  Histograms for 
spectral index (a), the power 
amplitude (b) and 2D 
Histogram (c) for  coloured 
noise (𝜎𝑝𝑙) and white noise 

(𝜎𝑤𝑛) amplitudes ) for GPS 
station FRAE. 
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Figure 3.  

Differences of  
spectral index 
estimates (a),  
relative 
difference of  
power 
amplitude (b), 
rate  (c)  and 
rate 
uncertainty.  
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Figure 4.  Time series of the 
Up coordinate for GPS 
station IIGS (a) and GUAT (b) 
with the linear fit models 
from CATS (green) and 
MCMC (red). The vertical 
black line marks at epoch 
2008.6 the offset. 
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