

Estimation of azimuthal satellite antenna phase center variations

<u>F. Dilssner</u>¹, T. Springer¹, R. Schmid², W. Enderle¹ ¹ESA/ESOC, Darmstadt, Germany ²DGFI, Munich, Germany

July 26, 2012 IGS Workshop 2012, Olsztyn, Poland

Estimation of azimuthal satellite antenna PCVs | Dilssner et al. | Page 1

European Space Agency

Outline

- Introduction
 - Satellite antenna arrays (GPS, GLONASS)
- GPS Block IIA/IIR-A/IIR-BM/IIF
 - Estimation strategy
 - Distribution of observations
 - Azimuth-dependent PCVs
 - Internal & external PCV comparisons
- GLONASS-M/GLONASS-K1
- Conclusions

GPS satellite antenna assembly

Block IIA array (Degnan and Pavlis 1994)

- Provision of nearly equal power density to all terrestrial users
- Beam-forming assembly consisting of
 - 12 helical elements
 - 2 concentric circles
 - 4 inner elements, equally spaced
- Azimuth of inner elements wrt +Y axis:
 - IIA: 67.5°, 157.5°, 247.5°, 337.5°
 - IIF: 22.5°, 112.5°, 202.5°, 292.5°
- Major part of total power (IIA: 90 %) supplied to inner quad helices
- Fourfold phase pattern to be expected

GPS satellite antenna assembly

Block IIF array (Boeing)

- Provision of nearly equal power density to all terrestrial users
- Beam-forming assembly consisting of
 - 12 helical elements
 - 2 concentric circles
 - 4 inner elements, equally spaced
- Azimuth of inner elements wrt +Y axis:
 - IIA: 67.5°, 157.5°, 247.5°, 337.5°
 - IIF: 22.5°, 112.5°, 202.5°, 292.5°
- Major part of total power (IIA: 90 %) supplied to inner quad helices
- Fourfold phase pattern to be expected

GPS/GLONASS satellite antennas

GPS IIA (Credits: Geo++)

GPS IIR (Credits: Lockheed)

GPS IIF (Credits: Boeing)

GLONASS-M (Reshetnev)

GLONASS-K1 (Reshetnev)

 \rightarrow 12 element helix design common to all GPS and GLONASS antenna types \leftarrow

Processing strategy

Parameter	IGS – GPS	LEO – GPS
Data	GPS code/phase from 50 IGS sites and Jason-1/2; processed simultaneously	
Time interval	Jan 1, 2004 – Dec 31, 2005 (Jason-1); Jan 1, 2011 – Feb 20, 2012 (Jason-2)	
Sampling rate	60 sec	60 sec
Cut-off angle	0 deg	0 deg
Weighting	$W = COS^2 Z$	$W = COS^2 Z$
Orbits	24-hour arcs; initial positions/velocities; 3 constant plus 2 periodic RPRs; 3 along- track CPRs	24-hour arcs; initial positions/velocities; 4 periodic CPRs every 12 hours; 5 drag parameters every 24 hours
Earth rotation	Daily pole coordinates and drifts, UT1 and LOD are estimated	
Ambiguities	Resolved	Not resolved
Satellite antennas	Spherical harmonics (8, 4) for GPS & LEOs	; GPS PCVs minimized over 0-14° nadir
Station antennas	PCOs/PCVs fixed to igs08.atx	-
Coordinates	No-net-rotation constraint applied	-
Troposphere	1-hourly ZPDs / daily gradients estimated	-

Distribution of observations

 \rightarrow Observations evenly distributed across azimuthal range \leftarrow

Estimation of azimuthal satellite antenna PCVs | Dilssner et al. | Page 7

Satellite- vs. block-specific PCVs

ightarrow Reasonable agreement both in phase and amplitude allow for block-specific PCVs \leftarrow

Block-specific PCVs (3D)

ightarrow Fourfold pattern apparent in PCVs of all four GPS antenna types ightarrow

Estimation of azimuthal satellite antenna PCVs | Dilssner et al. | Page 9

Impact of antenna array geometry

ightarrow IIA/IIF PCV minima closely match geometry of inner four antenna elements ightarrow

External consistency (ESA vs. JPL vs. TUM)

ightarrow Reasonable agreement between all three analysis centers \leftarrow

Estimation of azimuthal satellite antenna PCVs | Dilssner et al. | Page 11

Internal consistency (Jason-1 vs. Jason-2)

 \rightarrow Excellent agreement both in phase and amplitude for all three block types \leftarrow

Impact on internal orbit consistency

ightarrow Significant improvement can be noticed, but only for certain orbit overlaps \leftarrow

GLONASS-M/GLONASS-K1

S.

90

25

30.

- Despite array design, no azimuthal PCVs found
- "Out-of-family" PCVs detected for SVN 714
- Threefold phase pattern, almost symmetrical with variations ranging from -15 to +25 mm
- On-board antenna is of same design as other GLONASS-M antennas
- Pattern probably related to L2 signal anomaly
- Significantly impacts orbit quality (see overlap RMS in right figure)

[mm]

230

300.

270°

Dilssner et al., JoG 2010

Conclusions

- GPS:

- Azimuthal PCVs of up to ±6 mm found for all antenna types
- Reasonable agreement with JPL/TUM estimates (Miami 2008)
- Impact on GNSS parameters to be further investigated; orbit quality exhibits significant improvements, but also shows degradation
- GLONASS:
 - No azimuth-dependences identified, neither for any S/C of the M series nor for the recently launched GLONASS-K1 prototype
 - SVN 714 remains the only exception
- Applying azimuthal PCV corrections requires precise knowledge of S/C yaw attitude at all times, also during eclipse maneuvers (see GNSS satellite attitude characteristics talk by Dilssner et al.)