Three-Method Absolute Antenna Calibration Comparison

Andria Bilich⁽¹⁾, Martin Schmitz⁽²⁾, Barbara Görres⁽³⁾, Philipp Zeimetz⁽³⁾, Gerald Mader⁽¹⁾, Gerhard Wübbena⁽²⁾

(1) NOAA / National Geodetic Survey

(2) Geo++ GmbH

universität

Rheinische Friedrich-Wilhelms-Universität Bonn

(3) Institute for Geodesy and Geoinformation, University of Bonn

Outline

- Goals of Three-Method Comparison
- Overview of Methods
 - Geo++ robot in field
 - Uni of Bonn robot in anechoic chamber
 - NGS robot in field
- Comparison
 - Antennas tested
 - Results
- Conclusions and Future Work

Goal of Study

- NGS to demonstrate agreement with approved IGS calibration institutions
 - Send same antenna to 3 institutions
 - individual calibrations
- For multiple absolute calibration methods/institutions to contribute to IGS ANTEX:
 - Establish compatibility (matching results)
 - Understand any differences
- Evaluate different types of multi-frequency antennas
 - Geodetic (chokering or other multipath-rejecting reference station antenna)
 - Survey-grade (small, compact, often susceptible to near-field effects)

Geo++ GmbH

- Contributing to IGS since 2006
 - Operational since 2000
 - Similar robots at Hannover and Berlin contribute to IGS
- Robot in field
 - 3-axis, 5 degrees of freedom
 - Pivot point (~ L1/L2 PCO) remains fixed in space
- All-in-view GNSS signals, JAVAD TRE_G3T receiver
- Data analysis
 - Short baseline
 - Undifferenced phase data
 - Kalman filter

University of Bonn

microwave absorber			
transmitter motorised antenna GNSS-antenna			
PC NWA 5-12V			

- Approved by IGS AWG in 2010 (no calibrations in igs08.atx yet)
- Robot in anechoic chamber
 - 2-axis
 - Antenna boresight remains fixed in space
- Simulated signal (sine wave at carrier frequency)
- Network analyzer sends and receives

NOAA / NGS

- Robot in field
 - Corbin, VA
 - 2-axis
 - PCO not fixed in space
- All-in-view GPS signals
- Data analysis
 - Short baseline
 - Septentrio AsteRx receiver (both antennas)
 - Time-differences of singledifferenced phase
 - Unfiltered

For specifics, see poster "Absolute Antenna Calibration at the National Geodetic Survey"

Antennas in Comparison

Trimble GNSS chokering	Trimble Zephyr 2 with groundplane	Topcon PG-A1 rover with groundplane
TRM59800.00	TRM55971.00	TPSPG_A1+GP
Full GNSS	Full GNSS	GPS/GLONASS
17 in IGS network	17 in IGS network	0 in IGS network
3 samples	1 sample	1 sample

GPS L1/L2 only for this presentation.

One antenna sample tested

Convention for comparison:

- Add together PCO and PCV into total antenna phase center
- Reduce to antenna ARP
- Maintain condition that total phase = 0 mm at zenith

Differences in purely elevation-dependent PCV:

- <= 1 mm
 - L1 above 10°
 - L2 except for bump at 20° and 45°
- < 2 mm for L1 & L2

Trimble Zephyr 2 (TRM55971.00) GPS L1 differences

Trimble Zephyr 2 (TRM55971.00) GPS L1 differences 400

NGS – Geo++

Trimble Zephyr 2 (TRM55971.00) GPS L2 differences

Trimble Zephyr 2 (TRM55971.00) GPS L2 differences 400

NGS – Geo++

Trimble Zephyr 2 *Summary*

- •Most of inter-method differences < 1 mm
- •Exceptions to the 1mm rule:
 - –L1 below 10° elevation
 - –L2 below 30° elevation
- Majority of differences are < 2 mm (independent of azimuth and elevation)

Trimble GNSS Chokering (TRM59800.00)

Three antenna samples tested

Trimble GNSS chokering (TRM59800.00)

Trimble GNSS chokering (TRM59800.00)

Trimble GNSS chokering (TRM59800.00)

Serial #

xxxx068

GPS L1 elevation-dependent differences

L1 pattern size = 130 mm

GPS L2 elevation-dependent differences

L2 pattern size = 100 mm

L1 pattern size = 130 mm Geo++ - Bonn

L1 pattern size = 130 mm Geo++ - Bonn

L1 pattern size = 130 mm Geo++ - Bonn

L2 pattern size = 100 mm

L2 pattern size = 100 mm

L2 pattern size = 100 mm

3

2

0

-1

-2

-3

.4

mm

3

2

0

-1

-2

-3

Δ.

3

2

0

-1

-2

-3

Δ.

mm

In-depth Exploration of Chokering L2 Differences

- Systematic differences
- Is there a simple explanation?

GPS L2 elevation-dependent differences

... drift with respect to elevation angle is consistent with error in vertical PCO

GPS L2 elevation-dependent differences

Changing vertical PCO of one or more solution creates agreement:

- Shown here: add 3.5 mm to Geo++
- Same effect from:

4

- -4 NGS, -2 Bonn
- -2 NGS, +2 Geo++

40

elevation [deg]

60

80

-4 0

20

Trimble GNSS Chokering Summary

- •Good agreement for L1 (sub-mm)
- •Less ideal L2 agreement, differences are:
 - Systematic (same trends across samples)
 - Trends consistent with vertical PCO error
 - Area of active research for AWG
 - < 2 mm above 30° elevation (not 10°)
 - < 3-5 mm in the 0-20° range

Conclusions

- NGS has demonstrated agreement with Geo++ and Bonn for IGS-quality antennas ...
- AWG active research to continue
 - Source of vertical PCO mis-estimation
 - Calibration effects on position
 - Near-field effects (robot, antenna mount) on calibration

Topcon PG-A1 with groundplane (TPSPG_A1+GP)

Topcon PG-A1 (TPSPG_A1+GP)

Differences in purely elevation-dependent PCV:

- L1 ± 2 mm
- L2 ± 4 mm w/ bias
- Extremely variable
- Differences in L2 PCV are larger than PCV themselves

Topcon PG-A1 (TPSPG_A1+GP) **GPS L1 PCV**

Bonn

NGS

Topcon PG-A1 (TPSPG_A1+GP) GPS L2 PCV

Topcon PG-A1 (TPSPG_A1+GP) GPS L1 differences

Topcon PG-A1 (TPSPG_A1+GP) GPS L2 differences

Topcon PG-A1 (TPSPG_A1+GP) GPS L1 differences 4

NGS – Geo++

Topcon PG-A1 (TPSPG_A1+GP) GPS L2 differences 4

NGS – Geo++

