

1

Modelling the Neutral Atmosphere Propagation Delay at UNB: Past, Present, and Future

Marcelo Santos, Richard Langley and Matthew McAdam,

University of New Brunswick, Department of Geodesy and Geomatics Engineering, Fredericton, NB

IGS Workshop

Olsztyn, 23-27 July, 2012

UNB3 and its offspring:

- UNB3 proper, UNB3m and UNBw.na
- NWP for positioning

VNB-VMF1

- 🛚 Idea
- Structure
- 🛚 A few tests

- UNB was tasked by Transport Canada (and, subsequently, Nav Canada) on behalf of the U.S. Federal Aviation Administration to develop a tropospheric propagation delay model for the Wide Area Augmentation System (WAAS).
- A series of models (UNB1 through UNB4) were developed and UNB3 was selected as most appropriate for aircraft navigation and ground-based applications.

UNB3

- Uses Saastamoinen zenith delays, Niell mapping functions, and a look-up table with annual mean and amplitude for temperature, pressure, and water vapour pressure varying with respect to latitude and height derived from model atmospheres.
 - Parameters computed for a particular latitude and day of year using a cosine function for the annual variation and a linear interpolation for latitude.
- Tested against 10 years of radiosonde data.
 - Max residual error of 20 cm.
- The UNB3 model has been extensively used in several regions of the world.
 - Capable of predicting total zenith delays with average uncertainties of 5 cm under normal atmospheric conditions.
- Modified (simplified) version of UNB3
 - Used in GPS receivers utilizing the Wide Area Augmentation System and other space-based augmentation systems (EGNOS, etc.).

Santos, 2012 msantos@unb.ca

- Humidity values computed from water vapor pressure were not consistent;

- Relative humidity values greater than 100 % for some epochs of the year in certain regions.

- Gray horizontal plane: limit of 100 %
- Worst cases: almost 150 % of relative humidity
- For latitudes greater than 45 degrees RH values are greater than 100 % for half a year.

Relative humidity values computed from UNB3

Santos, 2012 msantos@unb.ca

- Uses modified parameter values in UNB3 look-up table and associated UNB3 algorithms.
 - Predictions using relative humidity rather than water vapour pressure.
 - All computations done initially using relative humidity, subsequently converted to water vapour pressure for use in the zenith delay computation.
- Performance investigated using radiosonde data and compared to that of UNB3.
 - Based on ray-tracing analyses of 703,711 profiles from 223 stations in North America and surrounding territory from 1990 to 1996
 - Prediction errors with mean value -0.5 cm and standard deviation of 4.9 cm.
 - ▲ Absolute mean error has been reduced by almost 75%.
- > UNB3m_pack
 - Distribution package in FORTRAN and MATLAB.
 - http://gge.unb.ca/Resources/unb3m/unb3m.html .

- Wide area neutral atmosphere model for North America
- Grid-based model can perform better than a latitude (only) based model (such as UNB3m).
 - "UNBw.na generally has a better fit to the yearly behaviour of the zenith delays."

Data and Validation

100

-80

-60

-40

150

Santos, 2012 msantos@unb.ca

UNBw.na 'versus' UNB3m

Santos, 2012 msantos@unb.ca

- Tasked by Nav Canada to develop a low-elevation-angle mapping function for WAAS.
- NMF was considered too complex for some applications while the Chao, B&E, and F&K functions are biased at very low elevation angles.
- The objective was to find a model that would have good performance for elevation angles down to 2 degrees and also be simple enough for real-time implementation in a computation-limited receiver.
- Based on continued-fraction form.
- Bias at 2 degrees from comparison with ray tracing through radiosonde data: 3.82 cm with r.m.s. of 22.17 cm.
- Simplified version adopted for WAAS.

What is the UNB-VMF1 Service?

- A free service to the scientific/geodetic community providing geodetic-quality corrections to signal delays caused by the troposphere.
- UNB-VMF1 provides the "a" coefficient on a global grid
- Based on the Vienna Mapping Functions developed by the Institute of Geodesy and Geophysics at TU Wien.
- > What makes UNB-VMF1 different?
 - Independent state-of-the-art data sources (NWPs):
 - ✓ NCEP Reanalysis I
 - CMC Global Deterministic Prediction System (GDPS)
 - Independent state-of-the-art ray tracing algorithms:
 - UNB developed ray tracer by Nievinski (2009)
 - Compatibility with Global Geophysical Fluids Center products.

Santos, 2012 msantos@unb.ca

Product Name	Description	Parameters
unbvmfG	2.0x2.5 degree global grid NCEP Re-Analysis I 7 day latency	ah, aw, zhd, zwd
unbvmfGcmc	2.0x2.5 degree global grid CMC GDPS 1 day latency	ah, aw, zhd, zwd
unbvmfP*	2.0x2.5 degree global grid CMC GDPS 0 day latency	ah, aw, zhd, zwd

*unbvmfP produced with 24h, 30h, 36h, 42h forecasts
 Data format follows existing VMF1 service for continuity

Santos, 2012 msantos@unb.ca

(c) unbvmfP

Santos, 2012 msantos@unb.ca

UNB-VMF1

All UNB-VMF1 products have obtained *Provisional* approval status from:

- International Earth Rotation and Reference Systems Service (IERS) & Global Geophysical Fluids Center (GGFC)
- Mandatory 2-year evaluation period has begun
- Expected full approval for EGU 2014
- Data Availability begins (available NOW!): April 20, 2012
- > Full historical datasets to be added by end of 2012:
 - 1994-present
 - May not apply to all products (unbvmfGcmc/unbvmfP) due to data source availability.

Santos, 2004 msantos@unb.ca

> UNB-VMF1 Service operational NOW!

- ▶ Data available from April 20th 2012
- More data to become available before end of 2012
 NCEP only (historical availability issues with CMC datasets)
- All UNB-VMF1 products have GGFC/IERS Provisional approval status
 - ✤ Full approval for EGU 2014 (pending evaluation period)

http://unb-vmf1.gge.unb.ca

Total: 1460 Epochs = 1 year IGS Workshop, Olsztyn, 23 – 27 July, 2012

Global: +/- 1.3 mm

Global: +/- 0.95 mm

Bias of Equivalent Height Error – Hydrostatic Component

NCEP minus ECMWF

Mean of Equivalent Height Error – Hydrostatic Component Delta Between UNB-VMF1 (NCEP) and VMF1 (ECMWF) – (NCEP minus ECMWF) Year: 2012

CMC (GDPS) minus ECMWF

Mean of Equivalent Height Error – Hydrostatic Component Delta Between UNB-VMF1 (CMC) and VMF1 (ECMWF) – (CMC minus ECMWF) Year: 2012

Standard Deviation of Equivalent Height Error – Non-Hydrostatic Component

NCEP minus ECMWF

Standard Deviation of Equivalent Height Error – Non–Hydrostatic Component Delta Between UNB–VMF1 (NCEP) and VMF1 (ECMWF) – (NCEP minus ECMWF) Year: 2012

Global: +/- 1.4 mm

Global: +/- 0.72 mm

CMC (GDPS) minus ECMWF

Standard Deviation of Equivalent Height Error - Non-Hydrostatic Component

Delta Between UNB-VMF1 (CMC) and VMF1 (ECMWF) - (CMC minus ECMWF)

Year: 2012

Santos, 2012 msantos@unb.ca

Bias of Equivalent Height Error – Non-Hydrostatic Component

NCEP minus ECMWF

Mean of Equivalent Height Error – Non–Hydrostatic Component Delta Between UNB–VMF1 (NCEP) and VMF1 (ECMWF) – (NCEP minus ECMWF) Year: 2012

2 3 5 -5 -2 -1 n 4 -1 -0.50.5 1 0 Mean (mm) Mean (mm)

Global: -0.39 mm

Global: -0.22 mm

CMC (GDPS) minus ECMWF

Mean of Equivalent Height Error - Non-Hydrostatic Component

Delta Between UNB-VMF1 (CMC) and VMF1 (ECMWF) - (CMC minus ECMWF)

Year: 2012

Santos, 2012 msantos@unb.ca

(UNB-VMF1) - (VMF1)

*Global Values

	CMC (GDPS)		NCEP	
Parameter	Mean*	Std* 1σ	Mean*	Std* 1σ
ah	5.29x10 ⁻⁷	2.28x10 ⁻⁶	1.77x10 ⁻⁶	3.08x10 ⁻⁶
aw	3.63x10 ⁻⁶	2.44x10 ⁻⁵	8.78x10 ⁻⁶	5.63x10 ⁻⁵
Zhd (mm)	2.1	3.4	2.7	5.8
Zwd (mm)	5.4	15.7	5.7	30.5

- Zhd hydrostatic zenith delay
- Zwd non-hydrostatic zenith delay
- ah hydrostatic a-coefficient
- aw non-hydrostatic a-coefficient

Santos, 2012 msantos@unb.ca Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering IGS Workshop, Olsztyn, 23 – 27 July, 2012

For year 2012

> UNB3m

- Future refinements
- > UNBw.**
 - Gridded models for other continents
- NWP for positioning
 - Pros and cons

> UNB-VMF1

- Availability of the service
- Reliability ... more tests

- NOAA for the provision of NCEP
- CMC for the provision of GDPS
- IGS for the provision of GPS data sets
- > Johannes Böhm (TU Vienna)
- Joey Bernard (ACENET, UNB)

- Collins, J. P. (1999). <u>Assessment and Development of a Tropospheric Delay Model for Aircraft Users of the Global Positioning System</u>. M.Sc.E. thesis, Department of Geodesy and Geomatics Engineering Technical Report No. 203, University of New Brunswick, Fredericton, New Brunswick, Canada, 174 pp.
- Collins, J. P., and R. B. Langley (1999). <u>"Nominal and Extreme Error Performance of the UNB3</u> <u>Tropospheric Delay Model</u>." Final contract report for Nav Canada Satellite Navigation Program Office, by the Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering Technical Report No. 204, University of New Brunswick, Fredericton, New Brunswick, Canada, 173 pp.
- Collins, J. P. and Langley, R. B. (1998). "<u>The Residual Tropospheric Propagation Delay: How</u> <u>Bad Can It Get?</u>" Proceedings of the 8th International Technical Meeting of The Institute of Navigation, ION GPS-98, Nashville, TN, September 15–18, 1998, pp. 729–738.
- Leandro, R., R. B. Langley and M. C. Santos (2006) "UNB neutral atmosphere models: <u>development and performance</u>." Proceedings of the Institute of Navigation National Technical Meeting, 18-20 January, 2006, Monterrey, CA, USA.
- Leandro, R. F., M. C. Santos and R. B. Langley (2006). "<u>Wide Area Neutral Atmosphere Models</u> for GNSS Applications." *Proceedings of the ION GNSS 19th International Technical Meeting of the Satellite Division*, 29-26 September, 2006, Fort Worth, Texas, pp. 1910-1924.
- Leandro, R. F, R. B. Langley and M. C. Santos (2008). "UNB3m pack: A neutral atmosphere delay package for radiometric space techniques." GPS Solutions, Vol. 12, No. 1, pp. 65-70.
- Leandro, R. F, M. C. Santos and R. B. Langley (2009). "<u>A North America Wide Area neutral</u> <u>atmosphere model for GNSS applications</u>." *Navigation*, Vol. 56, No. 1, pp. 57-71.

- Cove, K. (2005). Improvements in GPS Tropospheric Delay Estimation with <u>Numerical Weather Prediction</u>. M.Sc.E. thesis, Department of Geodesy and Geomatics Engineering Technical Report No. 230, University of New Brunswick, Fredericton, New Brunswick, Canada, 98 pp
- Nievinski, F. G. (2009). <u>Ray-tracing Options to Mitigate the Neutral Atmosphere</u> <u>Delay in GPS</u>. M.Sc.E. thesis, University of New Brunswick, Dept. of Geodesy and Geomatics Engineering, Technical Report262.
- Urquhart, L. (2011). Assessment of Tropospheric Slant Factor Models: Comparison with Three Dimensional Ray-Tracing and Impact on Geodetic Positioning, M.Sc.E. thesis, Department of Geodesy and Geomatics Engineering Technical Report 275.
- Urquhart, L., F. G. Nievinski, and M. C. Santos (2012). Ray-traced slant factors for mitigating the tropospheric delay at the observation level." Journal of Geodesy, Vol. 86, pp. 149-160. DOI 10.1007/s00190-011-0503-x.
- Urquhart, L and M. Santos (2011). "<u>Development of of VMF1-like Service</u>." White paper, Department of Geodesy and Geomatics, University of New Brunswick, Fredericton.
- Urquhart, L., M. C. Santos, F. G. Nievinski, and J. Böhm (2012). "Generation and Assessment of VMF1-Type Grids Using North-American Numerical Weather Models." Accepted for publication, IAG Symposia Series.

- Boehm, J., B. Werl, and H. Schuh (2006b). "Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data." Journal of Geophysical Research, Vol. 111, No. B02406, doi:10.1029/2005JB003629.
- Herring, T. A. (1992). "Modelling atmospheric delays in the analysis of space geodetic data." In de Munck and Spoelstra [1992], pp. 157–164.
- Niell, A. E. (1996). "Global mapping functions for the atmosphere delay at radio wavelengths." Journal of Geophysical Research, Vol. 101, No. B2, pp. 3227–3246, doi:10.1029/95JB03048.

UNIVERSITY OF NEW BRUNSWICK

Making a Significant Difference

🛚 Where,

 \checkmark *mf*(*e*) = mapping function

 $\checkmark e =$ elevation angle

 $\checkmark a,b,c = \text{coefficients}$ (to be solved for)

UNB-VMF1: follows Boehm et al (2006a)

- Employs the "Fast Method"
- "b" and "c" coefficients are pre-determined
- "a" coefficient is then solved by raytracing+inverting Marini continued fraction.

Coefficient	Hydrostatic	Non-Hydrostatic
b	0.0029	Same as Niell (1996)
С	See below	Same as Niell (1996)

$$c = c_o + \left[\left(\cos\left(\frac{doy - 28}{365}2\pi + \psi\right) + 1 \right) \frac{c_{11}}{2} + c_{10} \right] \left(1 - \cos(\phi) \right)$$

Values for c_o , c_{11} , and c_{10} can be found in Boehm et al(2006a)

Santos, 2012 msantos@unb.ca

UNB-VMF1 – System Integration

Santos, 2012 msantos@unb.ca

	NCEP Re-Analysis I	CMC GDPS		
Grid Resolution	2.5x2.5 degrees (global)	0.6x0.6 degrees (global)		
Pressure Levels	17 (1000-10 mbar) specific humidity ONLY - (1000-300 mbar)	28 (1015-50 mbar)		
Туре	Analysis	Operational Forecast		
Availability	4x Daily (0h, 6h, 12h, 18h)	Initialized 2x daily (0h,12h) with 3h forecasts		

Difference between Raytraced ZHD from CMC/NCEP and Saastamoinen from Measured Pressure

Santos, 2012 msantos@unb.ca