

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra armasuisse Swiss Federal Office of Topography swisstopo

Results from IGS Workshop on GNSS Biases, 18–19 January 2012 in Bern

Stefan Schaer

Swiss Federal Office of Topography (swisstopo)

Workshop on GNSS Biases

18–19 January 2012 University of Bern, Switzerland (Hauptgebäude Universität Bern, Hörsaal HS 115) www.biasws2012.unibe.ch/programme.pdf

Programme and oral presentations

Wednesday 18 January

08:30-09:00 09:00-09:30 09:30-10:30 10:30	Workshop check-in Welcome and Introduction – A. Jäggi, R. Dach Participants' short introductions (part 1) – R. Dach 3 slides presented by each participant (in alphabetical order) Break
11:00-12:00	Participants' short introductions (part 2) – R. Dach 3 slides presented by each participant (in alphabetical order)
12:00-12:30	Overview of GNSS biases (part 1) – S. Schaer GPS/GLONASS differential code biases – S. Schaer
12:35-12:40 12:45	Photo session Lunch
14:00-15:00	Overview of GNSS biases (part 2) – S. Schaer (30') CODE's DCB specialties, GLONASS ambiguity resolution, intersystem phase biases, GLONASS-GPS station-specific intersystem translations, IGS ANTEX model – S. Schaer (10') DCB estimation at NRCan – R. Ghoddousi-Fard (10') PRN22/SVN47 DCB anomaly – A. Hauschild
15:00-15:30	GLONASS biases and clock corrections (part 1) – R. Dach Introduction and current status (CODE) – R. Dach
15:30	Break
16:00-17:00	GLONASS biases and clock corrections (part 2) – R. Dach Presentations by IGS AC representatives: (10') GFZ: Current status and plans – M. Uhlemann (10') CNES/CLS: Experience from CNES-CLS IGS AC – S. Loyer (10') Comparison of IGS AC GLONASS clock correction results – R. Dach
17:00–17:30	(10') GLONASS inter-channel biases in high-end receivers – JM. Sleewaegen & A. Simsky GNSS phase biases (part 1) – N. Teferle / S. Loyer (20') Integer clocks and integer PPP issues – S. Loyer (10') GLONASS Carrier Phase biases for RTK operation – G. Zyryanov
19:00	Dinner

Thursday 19 January

09:00-09:30 09:30-10:30	GLONASS biases and clock corrections (part 3) – R. Dach (15') Comparison of AC GLONASS biases – S. Schaer, M. Meindl Discussions concerning definition of "GLONASS reference biases" and proceeding towards an IGS-combined GLONASS clock product GNSS phase biases (part 2) – N. Teferle / S. Loyer (15') Uncalibrated Phase Biases for Precise Point Positioning Integer
10-30	Ambiguity Resolution – N. Teferle & X. Meng (15') Estimation of uncalibrated hardware delays for single- difference ambiguity resolution – J. Tegedor (15') GLONASS carrier-phase inter-frequency biases – L. Wanninger (15') Biases in GLONASS carrier phase observables – A. Zinoviev Break
11:00-12:30	New GNSS signals and related issues – JM. Sleewaegen / O. Montenbruck Presentations by representatives of receiver manufacturers: (25') New GNSS signals: how to deal with the plethora of observables? – JM. Sleewaegen (25') Line bias variations in GPS L1/L2/L5 signals – O. Montenbruck (10') GLONASS RTK interoperability issues with 3rd party receivers – F. Takac & P. Alves (10') Compass/Beidou: system status and initial service – J. Chen (presented by X. Meng) (10') Status of IGS M-GEX – R. Weber Discussion
12:45	Lunch
14:00-15:30	Bias calibration, combination, harmonization, exchange and formats – H. van der Marel / G. Petit (10') Bias-SINEX – L. Agrotis (10') RTCM / Special Committee 104, RINEX Status – J. Sass (10') RTCM-SSR strategy of bias treatment – G. Wübbena (10') Real-time calibration of GLONASS FDMA biases – A. Cartmell (10') Biases between BIPM's PPP clock solutions and IGS clock solution for NIST – G. Petit (10') Absolute calibration of P1-P2 biases and comparison with DCB determination – G. Petit (10') From differential to absolute code bias values – S. Schaer Discussion
15:30 16:00–16:30	Break Closing session – S. Schaer
Keeping of the worksh	Key issues, recommendations, action items
recepting of the worksh	op minutes of 1. year (110D)

Last updated 2 February 2012/ss

37 participants on 18 January 2012 in front of the main building of the University of Bern, Switzerland

Presentations available at: www.biasws2012.unibe.ch

Formerly the International GPS Service								
Workshop on GNSS Biases								
Main	Presentations							
<u>Program</u> <u>Registration</u>	as held at the IGS Workshop on GNSS Biases at the University of Bern, Switzerland on:							
List of participants Supporting documents	 <u>18 January 2012</u> <u>19 January 2012</u> 							
Travel and accommodation	on Please click on the title-author line of the presentation of interest to get the desired pdf file.							
Presentations etc.	Programme and oral presentations (final version)							
<u>Email contact</u>	<u>Key issues, recommendations, action items (preliminary version as approved by the workshop participants)</u> <u>Key issues, recommendations, action items (version to be completed/finalized)</u>							
	<u>Group photo</u> of all <u>workshop participants</u> taken on 18 January 2012 in front of the main building of the University of Bern							
	Collection of completed questionnaires							
	Collection of related papers							
	Collection of GLONASS bias values as computed by IGS ACs							

List of GNSS biases

- GNSS differential code biases (DCB)
- CODE's DCB specialties (e.g., DCB multiplier estimation)
- GLONASS interfrequency code biases (relevant to GNSS clock estimation, or PPP)
- Intersystem code biases
- "DCPB" crucial for GLONASS ambiguity resolution
- Intersystem phase biases (or drifts)
- Uncalibrated phase delays (UPD) relevant to undifferened integer fixing for PPP
- GLONASS-GPS station-specific intersystem translations as considered in CODE's GNSS analysis (IGS ANTEX model)
- (GPS) quarter-cycle issue (again crucial)

List of GNSS biases

- GNSS differential code biases (DCB)
- CODE's DCB specialties (e.g., DCB multiplier estimation)
- GLONASS interfrequency code biases (relevant to GNSS clock estimation, or PPP)
- Intersystem code biases
- "DCPB" crucial for GLONASS ambiguity resolution
- Intersystem phase biases (or drifts)
- Uncalibrated phase delays (UPD) relevant to undifferened integer fixing for PPP
- GLONASS-GPS station-specific intersystem translations as considered in CODE's GNSS analysis (IGS ANTEX model)
- (GPS) quarter-cycle issue (again crucial)

CODE's GPS/GLONASS P1-P2 DCB monthly solution, computed for December 2011

Satellites

CODE's GPS P1-P2 DCB monthly solution, computed for December 2011

Stations

CODE's GLONASS P1-P2 DCB monthly solution, computed for December 2011

Stations

Indirect and direct GPS P1-C1 DCB determination (1/3)

GPS receiver classes commonly distinguished:

P1/P2:	C1	P1	P2	
C1/P2:	C1		P2	
C1/X2:	C1			X2

Indirect and direct GPS P1-C1 DCB determination (2/3) → indirect

GPS receiver classes commonly distinguished:

P1/P2:	C1	P1	P2	
C1/P2:	C1		P2	
C1/X2:	C1			X2

Indirect and direct GPS P1-C1 DCB determination (3/3) → direct

GPS receiver classes commonly distinguished:

P1/P2:	C1	P1	P2	
C1/P2:	C1		P2	
C1/X2:	C1			X2

Direct GNSS DCB estimation for P1-C1 and P2-C2 based on RINEX data

- P1-C1 and P2-C2 observation differences are analyzed file by file (typically station by station for a particular day) and stored for:
 - overall combination
 - combinations may be actually recalled/retrieved for:
 - selected receiver types
 - selected receiver groups
 - all considered receivers/stations (=overall combination)
- Sophisticated outlier detection scheme using quantities responding to IQR (interquartile range IQR=Q_{0.75}-Q_{0.25}) → just one scalar quantity to be selected to cope with observation data with most various noise levels and characteristics, respectively
- Overall (LS) combination performed (with an outlier detection scheme concerning station-specific, or file-specific DCB determinations)

CODE's GNSS P1-C1 DCB monthly solution, computed for December 2011 (directly from RINEX)

Satellites

CODE's GPS P1-C1 DCB monthly solution, computed for December 2011 (directly from RINEX)

Stations

CODE's GLONASS P1-C1 DCB monthly solution, computed for December 2011 (directly from RINEX)

Stations

CODE's GNSS P2-C2 DCB monthly solution, computed for December 2011 (directly from RINEX)

CODE's GPS P2-C2 DCB monthly solution,

computed for December 2011 (directly from RINEX)

CODE's GLONASS P2-C2 DCB monthly solution, computed for December 2011 (directly from RINEX)

Statistics on GNSS DCB reprocessing from RINEX

Statistics on GNSS DCB reprocessing from RINEX

List of GNSS biases

- GNSS differential code biases (DCB)
- CODE's DCB specialties (e.g., DCB multiplier estimation)
- GLONASS interfrequency code biases (relevant to GNSS clock estimation, or PPP)
- Intersystem code biases
- "DCPB" crucial for GLONASS ambiguity resolution
- Intersystem phase biases (or drifts)
- Uncalibrated phase delays (UPD) relevant to undifferened integer fixing for PPP
- GLONASS-GPS station-specific intersystem translations as considered in CODE's GNSS analysis (IGS ANTEX model)
- (GPS) quarter-cycle issue (again crucial)

AC GLONASS bias files collected for comparison (GPS weeks 1666-1667)

- **COD** Center for Orbit Determination in Europe, AIUB, Switzerland
 - Bernese DCB
- EMR Natural Resources Canada, Canada
 - no GLONASS bias information (GLONASS biases ignored in GNSS clock analysis)
- **ESA** European Space Operations Center, ESA, Germany
 - bias-SINEX (first two days of GPS week 1666 missing)
- **GFZ** GeoForschungsZentrum, Germany
 - bias-SINEX
- **GRG** GRGS-CNES/CLS, Toulouse, France
 - modified Bernese DCB
- IAC Information-Analytical Centre, Russia
 - PBS format
- JPL Jet Propulsion Laboratory, USA
 - GIPSY time dependent parameter format (wrong weeks)

Biases in GPS/GLONASS (Clock) Processing

- DCB: differential code bias different hardware delays for P- and C-Code
- ISB: inter-system bias different hardware delays for measurements of different GNSS
- IFB: inter-frequency bias frequency-dependent hardware delays for the different GLONASS-signals
- We can only extract the sum of delays from a GPS/GLONASS data processing.

AIUB

O

Dach, Schaer and Meindl: Comparison of GPS/GLONASS Clock Solution - 6 / 34

AC GLONASS bias comparison: COD-ESA (1)

AC GLONASS bias comparison: COD-ESA (3) \rightarrow P1-C1 DCB corrected

J

Summary of AC GLONASS bias comparison

AC	Median (ns)	Mean (ns)	Std (ns)
COD-ESA	0.01	0	0.79
COD-GFZ	0.02	0	1.33
COD-GRG	5.63	1.87	23.12
ESA-GFZ	0.01	0	1.34
ESA-GRG	4.14	1.29	20.63
GFZ-GRG	6.00	1.72	25.23

List of GNSS biases

- GNSS differential code biases (DCB)
- CODE's DCB specialties (e.g., DCB multiplier estimation)
- GLONASS interfrequency code biases (relevant to GNSS clock estimation, or PPP)
- Intersystem code biases
- "DCPB" crucial for GLONASS ambiguity resolution
- Intersystem phase biases (or drifts)
- Uncalibrated phase delays (UPD) relevant to undifferened integer fixing for PPP
- GLONASS-GPS station-specific intersystem translations as considered in CODE's GNSS analysis (IGS ANTEX model)
- (GPS) quarter-cycle issue (again crucial)

GLONASS inter-channel phase biases in GNSS receivers

J.-M. Sleewaegen A. Simsky, W. De Wilde

IGS Bias Workshop, Jan2012

IGS Workshop, Olsztyn, Poland, 23-27 July 2012 Swiss Federal Office of Topography swisstopo

GLONASS Carrier Phase Biases

Wanninger, L. (2011): Carrier-Phase Inter-Frequency Biases of GLONASS receivers. http://www.qpsworld.com/tech-talk-blog/carrier-phase-inter-frequency-biases-glonass-receivers-12013

- Analog RF filters cannot account for these biases:
 RF filter bias would not be the same on L1 and L2
 - RF filter bias would not be such linear function of GLO fn

IGS Bias Workshop, Jan 2012	(c) Septentrio	4

Phase Bias from Digital Signal Processing

The effect is that the clock biases for code and carrier slightly differ (typically by <1µs):</p>

 $PR[m] = \rho + c\Delta\tau + \Delta PR + \dots$

 $\Phi[m] = \rho + c\Delta\phi + \dots = PR[m] + \frac{c(\Delta\phi - \Delta\tau) - \Delta PR}{Phase bias term} + \dots$

Only the sub-cycle part of the phase bias term is causing a problem:

 $GLOPhaseBias[m] = \operatorname{mod}(c(\Delta \phi - \Delta \tau) - \Delta PR, \lambda_{fn})$

with λ_{fn} the carrier wavelength for GLONASS frequency number fn, expressed in meters

IGS Bias Workshop, Jan 2012 (c) Septentrio 6

LS combination of CODE's accumulated IGSFINAL and EPNFINAL SDByyssss.LST results (WL)

Receiver type	S	D bias	RMS error (ns)	
ASHTECH Z18	:	22.120	2.268	
JAVAD TRE_G3TH DELT.	A:	218.901	0.675	
JPS EGGDT	:	58.271	0.606	
JPS E_GGD	:	128.505	0.565	
JPS LEGACY	:	111.921	0.609	
LEICA GRX1200+GNSS	:	-269.900	0.753	
LEICA GRX1200GGPRO	:	-242.546	0.484	
NOV OEMV3	:	-247.286	0.516	
SEPT POLARX3ETR	:	-501.984	0.533	
TPS EGGDT	:	70.275	0.726	
TPS EUROCARD	:	155.776	0.652	
TPS E_GGD	:	121.529	0.868	
TPS LEGACY	:	92.682	0.517	
TPS NETG3	:	52.682	0.507	
TPS ODYSSEY_E	:	57.586	0.611	
TRIMBLE NETR5	:	96.551	0.515	
TRIMBLE NETR8	:	74.919	0.908	

O

GLONASS RTK Interoperability Issues Involving 3rd Party Receivers

Frank Takac, Leica Geosystems, Heerbrugg, Switzerland

Paul Alves, NovAtel, Calgary, Canada

V

Estimating the SD Ambiguity Bias

In practice, the SD ambiguity bias can be estimated with the aid of code observations.
 For example, SD phase minus SD code.

$$\phi_{mk,i}^{p} = \rho_{mk}^{p} + cdt_{mk} + \lambda_{i}^{p}n_{mk,i}^{p} + b_{mk} + \varepsilon_{mk,i}^{p} \qquad P_{mk,i}^{p} = \rho_{mk}^{p} + cdt_{mk} + B_{mk} + E_{mk,i}^{p}$$

$$\begin{split} \lambda_{i}^{p} a_{mk,i}^{p} &= \phi_{mk,i}^{p} - P_{mk,i}^{p} \\ &= \lambda_{i}^{p} n_{mk,i}^{p} + \underbrace{b_{mk} - B_{mk}}_{\beta_{mk}} + E_{mk,i}^{p} \qquad \qquad \beta_{mk} \quad \text{-Differential code-phase} \\ &\text{receiver bias (DCPB)} \end{split}$$

 For a homogeneous receiver pair, the differential code-phase receiver bias (DCPB) effectively cancels.

IGS Workshop, Olsztyn, Poland, 23-27 July 2012 Swiss Federal Office of Topography swisstopo

6

List of GNSS biases

- GNSS differential code biases (DCB)
- CODE's DCB specialties (e.g., DCB multiplier estimation)
- GLONASS interfrequency code biases (relevant to GNSS clock estimation, or PPP)
- Intersystem code biases
- "DCPB" crucial for GLONASS ambiguity resolution
- Intersystem phase biases (or drifts)
- Uncalibrated phase delays (UPD) relevant to undifferened integer fixing for PPP
- GLONASS-GPS station-specific intersystem translations as considered in CODE's GNSS analysis (IGS ANTEX model)
- (GPS) quarter-cycle issue (again crucial)

Intersystem phase biases (or drifts)

Biases and clock modelling in the frame of ambiguity

International GNSS Service Workshop 2012 23 - 27 July 2012, Olsztyn, Poland resolution E. Orliac¹, R. Dach³, K. Wang², M. Rothacher², D. Volthenleitner³, U. Hugenzobler³, M. Heinze³, and D. Svehla⁴ ⁴ Astronomical institute, University of Bern, Satzerland ⁴ Nutritute of Geolagy and Phologramments, Sama Tederal Institute of echnology Zurich, Switzerland hithut für Autonomische und Physikalische Geodàsie, Technische

TRACK-TO-TRACK AMBIGUITY RESOLUTION

Universitiit München, Munich, Germany European Space Operations Centre, European Space Agency, Darmstadt

Fig. 2 shows the histograms of the fractional wide-lane

ambiguities (left) and the fractional track-to-track

wide-lane ambiguities (right) for station USN3 on

In the frame of the ESA project "Satellite and Station Clock Modelling for GNSS" we carried out a review of the code and phase biases in and between existing GNSS. The stability of these biases and opportunities for their modeling were investigated and compared to solutions RG00, RG11 and RGI. the requirements for successful ambiguity resolution RG00-GG00 170-172/2012 Based on both simulated and real data, the track-to-

1411

Lan in

.

RG11-GG11 170-172/2012

8.10 8.10 8.20 8.28

RGI-GGI 170-172/2012 010 015 020 025

.

Figure 1: Mean of the difference of baseline residual RMS whe

Higher 21 Mean of the antenneo of baseline relidau indo when grouped by mecover class between the RG and GG residuals for mixed-0455 solutions. ROOD (top), RO11 (middle), and RG1 (hottom). Values were computed residuals from baselines from DQV 170-172 of 2012. The numbers in each square indicate the

number of contributing baselines to a specific receiver class

Fig. 1 shows that correcting for station-wise GLONASS

translation and troposphere bias does not impact the

when estimating a time-varying inter-system phase

bias, the degradation of the RG residuals compared to

This effect is not yet fully understood and needs to be

the GG or RR one is reduced (colder colors in Fig. 1).

IAPG

further investigated.

u

formances of any receiver class pair. Ho

on the zero- and single-difference levels.

OVERVIEW

GP5/GLO mixed baselines only as formed in the CODE final 1-day solution are used in this investigation, i.e. GPS only baselines are not considered. Only preprocessed phase ionosphere-free (L3) observations are used. Estimated parameters are daily coordinates and troposphere parameters, plus (float) ambiguities. The mixed baselines are processed 7 times:

track ambiguity resolution was investigated, with a

special focus set on the impact of clock modeline.

1. in GPS-only mode (G)

2. in GLO-only mode (R) 3. in GPS/GLO mode (RG00)

4. in GPS/GLO mode, correcting for station intersystem translation biases (RG10)

5. in GPS/GLO mode, correcting for station intersystem troposphere blases (RG01)

6. in GPS/GLO mode, correcting for both station inter-system translation and troposphere biases (RG11).

7. in GPS/GLO mode, estimating a phase interystem bias, modelled as a piece wise linear function with a knot spacing of 1 hour (RGI)

Table 1: Statistics on the distribution of the baseline L3 00 phase rmalized residuals RMS. Values are given in mm and are based residuals from DOHs 170-172 of 2012.

	(min)	68316	(median)	where a	(max)	~
6	0.16	1.05	1.23	1.42	1.90	566
	0.13	1.09	1.27	1.43	2.11	566
6600	0.17	1.06	1.24	1.43	1.89	566
GG10	0.20	1.21	1.42	1.60	2.01	566
6601	0.57	1.06	1.24	1.43	1.89	566
6611	0.17	1.06	1.23	1.43	1.89	566
661	0.17	1.06	1.24	1.42	1.89	564
8800	0.14	1.12	1.30	1.47	2.08	566
8850	0.15	1.11	1.29	1.47	2.05	566
RRDI	0.35	1.12	1.30	1.48	2.07	566
RR11	0.14	1.11	1.29	1.47	2.05	566
881	0.14	1.10	1.28	1.46	2.05	566
RG-00	0.20	1.23	1.42	1.60	2.01	544
RG 10	0.20	1.21	1.42	1.60	2.01	564
RG-01	0.20	1.23	1.42	1.60	2.05	566
RG11	0.20	1.21	1.42	1.60	2.01	566
and a	4.44				1.00	1000

The main point from Tab. 1 is that the G and R solution (single-GNSS) show the smallest residuals overall, with, omparable performances.

For mixed solutions (3. to 7.) the DD residuals were analyzed in three groups: GPS/GPS (GG), GLO/GLO (RR), and GPS/GLO (RG). The RMS of the DD residuals between satellites of the same GNSS (GGxx and RRxx) are only slightly higher than the residuals from the single-GNSS solutions (1. and 2.) whereas the residuals accross the systems (RGxx) are significantly higher. In solutions 4, to 7, attempts were made to identify the potential source of the degradation. Correcting for coordinate and/or troposphere bias (to handle GLO antenna calibration bias from a GPS only based calibration, solutions 4. to 6.) did not help. Only estimating a inter-system time-varying phase bias seems to have a little effect (solution 7.).

AIUB Poster completed by L. University of Bern, Bern Astronomical Institute, University of Bern, Bern etienne orliac@aiub unibe.ch

plied by E.Orlac, July 201

We now investigate the role of the receiver type, or more precisely the role to the receiver type combination. Receivers from a same brand were grouped together. Here we focus on the difference between the residuals RMS from the GG and RG DD in

Figure 2: Histograms of the fractional wide-lane ambiguities (left and the fractional track to-track wide-lane ambiguities from me-Wübbena linear combination for station USN3 of February 1st, 2011.

Fig. 3 shows the relationship between the fractional N5 and N1 ambiguities and the weighted track lengths on the zero-difference level. The data for 10 stations in February 2011 was used for plotting. We see that trackto-track ambiguities with small fractional parts are more likely to be generated by the ones with long track lengths.

43 42 41 0 81 52 53 64 Elevel igure 3: Relationship between the fractional NS (top) and NI sottom) ambiguities and the weighted track lengths on the zero difference level

Fig. 4 shows the track-to-track N1 ambiguities with an absolute fractional part below 0.1 cycle. The resolved track-to-track ambiguities were constrained with a strong weight on the normal equation level iteratively. We see that the constraining has increased the numbe of the good track-to-track ambiguities significantly.

art in [-0.1, 0.1] cycle after seven iterations of constraining the

This study was performed in the framework of the ESA Project «Satellite and Station Clock Modelling for GNSS» (Main Co No. 4000101520/10/D/SR).

48

List of GNSS biases

- GNSS differential code biases (DCB)
- CODE's DCB specialties (e.g., DCB multiplier estimation)
- GLONASS interfrequency code biases (relevant to GNSS clock estimation, or PPP)
- Intersystem code biases
- "DCPB" crucial for GLONASS ambiguity resolution
- Intersystem phase biases (or drifts)
- Uncalibrated phase delays (UPD) relevant to undifferened integer fixing for PPP
- GLONASS-GPS station-specific intersystem translations as considered in CODE's GNSS analysis (IGS ANTEX model)
- (GPS) quarter-cycle issue (again crucial)

Un-calibrated Phase Biases for Precise Point Positioning Integer Ambiguity Resolution

Jianghui Geng^{1,2}, <u>Norman Teferle</u>³, Xiaolin Meng¹, Alan Dodson¹

 Nottingham Geospatial Institute (NGI), University of Nottingham
 Now at: Scripps Institution of Oceanography, University of California, San Diego
 Geophysics Laboratory, University of Luxembourg

Workshop on GNSS Biases, 18-19 January 2012, Bern, Switzerland

Contents

- Introduction
- Fractional-cycle bias (FCB) method for integer ambiguity resolution
- FCB and Integer-recovery clock (IRC) method comparison
- Conclusions

UNIVERSITÉ DU LUXEMBOURG

List of GNSS biases

- GNSS differential code biases (DCB)
- CODE's DCB specialties (e.g., DCB multiplier estimation)
- GLONASS interfrequency code biases (relevant to GNSS clock estimation, or PPP)
- Intersystem code biases
- "DCPB" crucial for GLONASS ambiguity resolution
- Intersystem phase biases (or drifts)
- Uncalibrated phase delays (UPD) relevant to undifferened integer fixing for PPP
- GLONASS-GPS station-specific intersystem translations as considered in CODE's GNSS analysis (IGS ANTEX model)
- (GPS) quarter-cycle issue (again crucial)

Mean GLONASS-GPS troposphere ZPD biases: CODE IGS (global) weekly results

List of GNSS biases

- GNSS differential code biases (DCB)
- CODE's DCB specialties (e.g., DCB multiplier estimation)
- GLONASS interfrequency code biases (relevant to GNSS clock estimation, or PPP)
- Intersystem code biases
- "DCPB" crucial for GLONASS ambiguity resolution
- Intersystem phase biases (or drifts)
- Uncalibrated phase delays (UPD) relevant to undifferened integer fixing for PPP
- GLONASS-GPS station-specific intersystem translations as considered in CODE's GNSS analysis (IGS ANTEX model)
- (GPS) quarter-cycle issue (again crucial)

[IGSMAIL-6583] GPS quarter-cycle biases

Until recently, we did expect GPS quarter-cycle biases between L2(P) and L2(C) only for Leica and NovAtel receivers. As a consequence, ambiguity resolution was not permitted between modernized GPS satellites (specifically Block IIR-M and IIF) and older generations as soon as a receiver type belonging to the mentioned receiver group gets involved.

We could recognize, however, three additional characteristics that must be taken into account:

1. Javad receivers obviously also belong to this receiver group (potentially revealing quarter-cycle biases). We could verify corresponding biases for the JAVAD TRE_G3TH DELTA receivers operated at AREV, DGAV, TABV, WTZZ. It is worth mentioning that AREV, DGAV, TABV started to provide C2 and thus implicitly L2(C) on February 3, 2012. Quarter-cycle biases started to occur exactly in coincidence with that date (day 034 of 2012) for these Javad receivers. Verification was possible on the zero baselines AREV-AREQ (wrt ASHTECH UZ-12), DGAV-DGAR (wrt ASHTECH UZ-12), and ultimately on the 50km baseline TABV-JPLV (wrt JPS EGGDT).

2. Moreover, we realized that there are certain time periods for particular modernized GPS satellites where C2 and L2(C) seem to be commonly unavailable (no receiver model was able to provide C2 and L2(C) at all). SVN49 is a prominent candidate in the table of such time periods:

PRN01/SVN49: 54951 <= MJD < 54970 PRN25/SVN62: 55353 <= MJD < 55375 PRN01/SVN49: 55677 <= MJD < 55688 PRN24/SVN49: 55959 <= MJD < 56001

3. Finally, we noticed cases, where L2(C) was not observed by particular receivers for one (or a subset) of the modernized GPS satellites.

As a consequence of the above observations, we changed our analysis software in a way that ambiguity resolution is generally not permitted between modernized GPS satellites as soon as a Javad, Leica, or a NovAtel receiver type gets involved.

Line bias variations in GPS L1/L2/L5 signals

O. Montenbruck

DLR/GSOC

Slide 1 IGS Bias Workshop > Bern > 18-19 Jan. 2011

Summary and Conclusion

- Triple frequency carrier phase combination provides evidence for thermally dependent line bias variations in GPS IIF satellites
- → Apparent L1/L2 clock is affected by similar variations despite highly stable Rubidium Frequency Standard (→ all frequencies are affected)
- → Need

 - → L1/L5-L1/L2 bias product (with e.g. 15-min sampling) or
 - → Empirical L1/L5-L1/L2 model
- → Problem most evident in GPS; other GNSSs are less affected (or not at all)

Slide 10 IGS Bias Workshop > Bern > 18-19 Jan. 2011

• We may summarize that ...

- GNSS biases become relevant when
 - different observable types,
 - different frequencies,
 - different GNSS (or satellite generations),
 - different receiver antenna types,
 - different receiver antenna mountings,
 - different receiver antenna environments,
 - different receiver types,
 - different receiver firmware versions,
 - or, ultimately, different observation techniques are involved.

Thank you for your attention ...

"Don't be alarmed, folks—he's completely harmless unless something startles him."

IGS BCWG Splinter Meeting Agenda

- Results from IGS Workshop on GNSS Biases, 18–19 January 2012 in Bern
 - Key issues, recommendations, action items
 - See <u>www.biasws2012.unibe.ch</u>
- New bias products generated at CODE
 - P1-C1 and P2-C2 for GPS and GLONASS
 - See IGS Technical Report 2011
- Discussion/feedback concerning bias handling in IGS AC analysis software
 - From cc2noncc to ...
 - Priority list of GNSS observable types
 - See poster on Availability and Completeness of IGS Tracking Data
- GLONASS clock estimation and treatment of GLONASS pseudorange biases
 - IGS combined GLONASS clock product
- Bias SINEX
- Additional discussion items:
 - Discussion concerning GLONASS-GPS intersystem bias parameters for station coordinates and troposphere ZPD
 - Remarks on CODE's GLONASS ambiguity resolution scheme

Plethora of GNSS observables: different GPS/GLONASS receiver tracking (1/3)

AOA BENCHMARK ACT	(10)		G:P1	G:P2					•
AOA BENCHMARK ACT	(88)	G:C1	G:P1	G:P2	•	•		•	•
AOA SNR-12 ACT	(22)	G:C1	G:P1	G:P2	•	•		•	•
AOA SNR-8000 ACT	(31)	G:C1	G:P1	G:P2	•	•		•	•
ASHTECH PF500	(11)	G:C1	•	G:P2	•	R:C1		R:P2	•
ASHTECH UZ-12	(513)	G:C1	G:P1	G:P2	•	•		•	•
ASHTECH Z-XII3	(8)	G:C1	•	G:P2	•	•		•	•
ASHTECH Z-XII3	(229)	G:C1	G:P1	G:P2	•	•		•	•
ASHTECH Z-XII3T	(129)	G:C1	G:P1	G:P2	•	•		•	•
ASHTECH Z18	(24)	G:C1	G:P1	G:P2	•	R:C1	R:P1	R:P2	•
BLACKJACK	(4)	G:C1	G:P1	G:P2	•	•		•	•
DICOM GTR50	(11)	G:C1	G:P1	G:P2	•	•		•	•
IFEN SX_NSR_RT_400	(11)	G:C1	•	G:P2	•	•		•	•
JAVAD TRE_G3T DELTA	(11)	G:C1	G:P1	G:P2	•	R:C1	R:P1	R:P2	•
JAVAD TRE_G3TH DELTA	(1)	G:C1	•	G:P2	•	•		•	•
JAVAD TRE_G3TH DELTA	(131)	G:C1	G:P1	G:P2	•	R:C1	R:P1	R:P2	•
JPS EGGDT	(141)	G:C1	G:P1	G:P2	•	R:C1	R:P1	R:P2	•
JPS EUROCARD	(10)	G:C1	G:P1	G:P2	•	R:C1	R:P1	R:P2	•
JPS E_GGD	(55)	G:C1	G:P1	G:P2	•	R:C1	R:P1	R:P2	•
JPS LEGACY	(4)	G:C1	G:P1	G:P2	•	•		•	•
JPS LEGACY	(192)	G:C1	G:P1	G:P2	•	R:C1	R:P1	R:P2	•
LEICA GRX1200+GNSS	(172)	G:C1	•	G:P2	•	R:C1		R:P2	•
LEICA GRX1200GGPRO	(1)	G:C1	•	G:P2	•	•		•	•
LEICA GRX1200GGPRO	(452)	G:C1	•	G:P2	•	R:C1		R:P2	•
LEICA GRX1200PRO	(44)	G:C1	•	G:P2	•	•		•	•
NOV OEM4-G2	(11)	G:C1	•	G:P2	•	•		•	•
NOV OEMV3	(44)	G:C1	•	G:P2	•	R:C1		R:P2	•
ROGUE SNR-8000	(23)	G:C1	•	G:P2	•	•		•	•
ROGUE SNR-8100	(11)	G:C1		G:P2	•	•	•	•	•

U

Plethora of GNSS observables: different GPS/GLONASS receiver tracking (2/3)

	· · · · · · · · · · · · · · · · · · ·	71)	a. a1	a. D1	a					
SEPT POLARX2	(/1)	G:CI	G:PI	G:PZ	•	•	•	•	•
SEPT POLARX3	BETR (11)	G:C1	G:P1	G:P2	•	R:C1	•	•	R:C2
SEPT POLARX3	BETR (11)	G:C1	G:P1	G:P2	•	R:C1	•	R:P2	•
SEPT POLARX4	ITR (5)	G:C1	G:P1	G:P2	•	R:C1	•	•	R:C2
SEPT POLARX4	ITR (4)	G:C1	G:P1	G:P2		R:C1		R:P2	•
TPS EGGDT	(11)	G:C1	G:P1	G:P2	•	R:C1	R:P1	R:P2	•
TPS EUROCARE) (9)	G:C1	G:P1	G:P2		R:C1	R:P1	R:P2	
TPS E_GGD	(79)	G:C1	G:P1	G:P2		R:C1	R:P1	R:P2	
TPS GB-1000	(33)	G:C1	G:P1	G:P2		R:C1	R:P1	R:P2	
TPS LEGACY	(13)	G:C1	G:P1	G:P2		R:C1	R:P1	R:P2	
TPS NET-G3A	(17)	G:C1	G:P1	G:P2					
TPS NET-G3A	(88)	G:C1	G:P1	G:P2		R:C1	R:P1	R:P2	
TPS NETG3	(11)	G:C1	G:P1	G:P2					
TPS NETG3	(121)	G:C1	G:P1	G:P2		R:C1	R:P1	R:P2	
TPS ODYSSEY_	_E (44)	G:C1	G:P1	G:P2		R:C1	R:P1	R:P2	
TRIMBLE 4000)SSE (11)	G:C1		G:P2					
TRIMBLE 4000)SSI (65)	G:C1		G:P2					
TRIMBLE 4700) (33)	G:C1		G:P2					
TRIMBLE 5700) (21)	G:C1		G:P2					
TRIMBLE NETR	25 (13)	G:C1		G:P2					
TRIMBLE NETR	25 (96)	G:C1		G:P2		R:C1		R:P2	
TRIMBLE NETR	25 (120)	G:C1		G:P2		R:C1	R:P1	R:P2	
TRIMBLE NETR	.8 (29)	G:C1		G:P2					
TRIMBLE NETR	.8 (32)	G:C1		G:P2		R:C1	R:P1		
TRIMBLE NETR	.8 (62)	G:C1		G:P2		R:C1	R:P1	R:P2	
TRIMBLE NETR	.8 (18)	G:C1	G:P1	G:P2		R:C1	R:P1	R:P2	
TRIMBLE NETR	.9 (18)	G:C1		G:P2					
TRIMBLE NETR	.9 (53)	G:C1		G:P2		R:C1		R:P2	
TRIMBLE NETR	.9 (110)	G:C1		G:P2		R:C1	R:P1	R:P2	
TRIMBLE NETR	RS (244)	G:C1		G:P2					
TRIMBLE NETR	RS (9)	G:C1	G:P1	G:P2					

U

Plethora of GNSS observables: different GPS/GLONASS receiver tracking (3/3)

(2)

(3)

(2)

AOA	BENCHMARK	ACT	(2)
-----	-----------	-----	-----

- ASHTECH Z-XII3 (2)
- JAVAD TRE_G3TH DELTA (2)
- JPS LEGACY (2)
- LEICA GRX1200GGPRO (2)
- SEPT POLARX3ETR (2)
- SEPT POLARX4TR (2)
- TPS NET-G3A (2)
- TPS NETG3
- TRIMBLE NETR5 (3)
- TRIMBLE NETR8 (4)
- TRIMBLE NETR9
- TRIMBLE NETRS