# The Interactions between IGS and GGOS

#### **Markus Rothacher**

#### Institute of Geodesy and Photogrammetry (IGP) ETH Zurich, Switzerland



2012 IGS Workshop July 23-27, 2012, Olsztyn, Poland





Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

#### **Overview**

- GGOS Vision, Mission and Goals
- GGOS Status, Structure and Themes
- What does GGOS expect from the IGS ?
- How does the IGS benefit from GGOS ?
- Conclusions



#### **Motivation: Insufficient Data Basis / Quality**



## Warming debate highlights poor data



Nature, 18.08.2005

- → Need for a Global Earth Observing System of Systems (GEOSS) realized by the Group on Earth Observation (GEO)
- → Global Geodetic Observing System (GGOS): geodetic component and metrological basis of GEOSS

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



## **GGOS Vision and Mission**





## Vision of GGOS (2011)

# Advancing our understanding of the dynamic Earth system by quantifying our planet's changes in space and time



2012 IGS Workshop, July 23 – 27, 2012, Olsztyn, Poland

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

## Mission of GGOS (2011)

We live on a dynamic planet in constant motion requiring for its understanding long-term, continuous quantification of its changes in a truly stable frame of reference.

#### The mission of GGOS is:

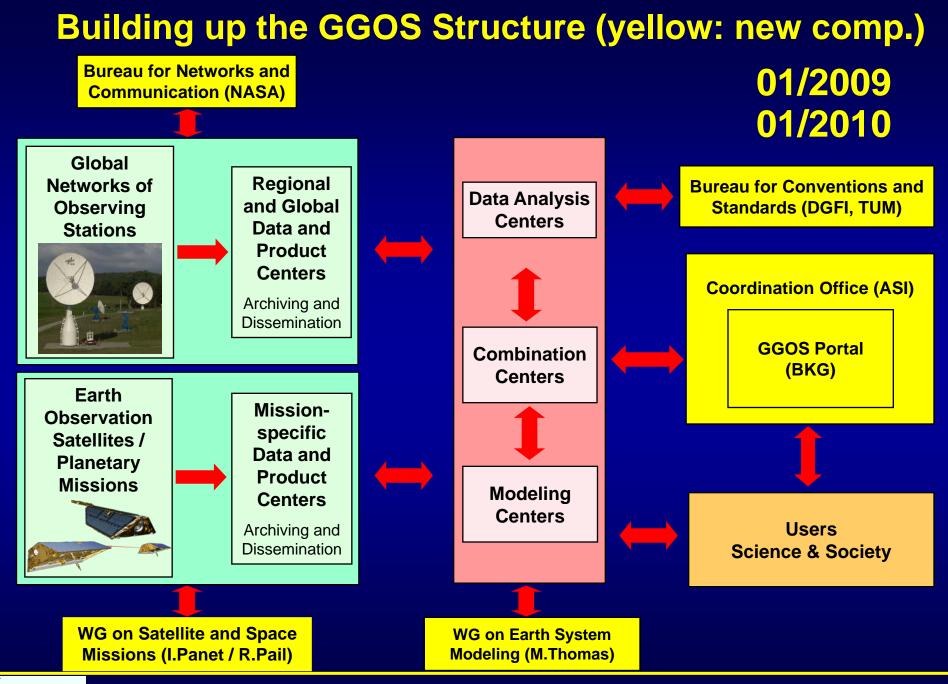
- to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution;
- to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications;
- to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built.

http://www.ggos.org/



## Goals of GGOS (2011)

The goals of GGOS are:


- 1. To be the primary source for all global geodetic information and expertise serving society and Earth system science.
- 2. To actively promote, sustain, improve and evolve the global geodetic infrastructure needed to meeting Earth science and societal requirements.
- 3. To coordinate the international geodetic Services that are the main source of key parameters needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system.
- 4. To communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. http://www.ggos.org/



## **GGOS Status, Structure and Themes**







Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

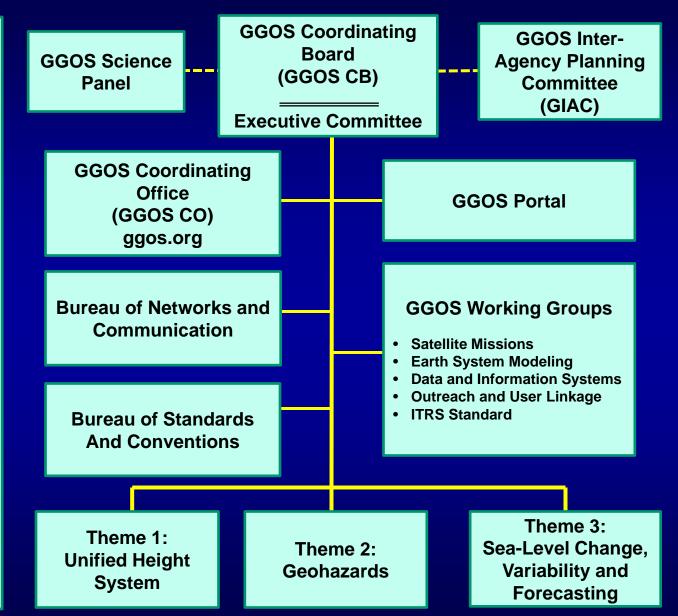
ETH



#### **GGOS: Organizational Structure (2011)**

#### GGOS Consortium

#### Representatives of IAG Scientific Services

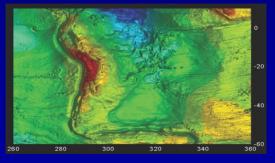

- Int'l GNSS Service (IGS)
- Int'l VLBI Service for Geodesy and Astrometry (IVS)
- Int'l Laser Ranging Service (ILRS)
- Int'l Doris Service (IDS)
- Int'l Earth Rotation and Reference Systems Service (IERS)
- Int'l Gravity Field Service (IGFS)
- Int'l Geoid Service (IGeS)
- Int'l Gravimetric Bureau (BGI)
- Bureau International des Poids et Mesures (BIPM)
- Int'l Altimetry Services (IAS)
- Int'l Center for Earth Tides (ICET)
- Int'l Centre for Global Earth Models (ICGEM)
- Int'l Digital Elevation Model Service (IDEMS)
- IAG Bibliographic Service (IBS)
- Permanent Service for Mean Sea Level (PSMSL)

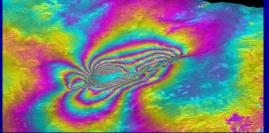
#### **Representatives of IAG Commissions**

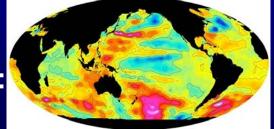
- Reference Frames
- Gravity Field
- Earth Rotation and Geodynamics
- Positioning and Applications

#### **Representatives of Other Entities**

- Int'l Federation of Surveyors (FIG)
- Universities
- Research Organizations
- Space Agencies
- ICSU Bodies
- UN Bodies
- GEO





## **Three GGOS Themes (Integrated Products)**

Ideas by Reiner Rummel (Gravity Workshop in Graz): work on thematic (geodetic) observing systems (and products)
→ GGOS Retreat in Miami, Febuary 2010: 3 themes selected

- Theme 1: Global Unified Height System (M. Sideris, J. Ihde et al.): together with IAG ICP 1.2; ESA project (TUM, BKG, Univ. Calgary), GOCE
- Theme 2: Geohazards (T. Dixon, F. Amelung, R. Gross): InSAR data availability for supersites; Internat. InSAR Service; now: displacement service
- Theme 3: Sea-Level Change, Variability and Forecasting (C.K. Shum, M. Tamisiea, T. Schöne): action plan has been consolidated, CfP









## **GGOS Implementation Work**

#### GGOS Retreat June 26 - 28, 2012 $\rightarrow$ actions based on GGOS goals:

- Identify the gaps for Theme 2 (geohazards)
- New action plan integrating retreat outcome and existing
- Communications plan (internal, external, services, comm., internat., ...)
- Fill the GGOS Portal with GGOS data and products (metadata)
- Extract user requirements and identify user categories (Science Panel)
- Infrastructure development plan and identify priority countries
- Stronger involvement of gravity community
- Promotion of the International Altimetry Service (IAS)
- Plan GGOS participation in international organizations (GEO, CEOS, ...)
- Generation of outreach material
- Need of a GGOS Bibliographic Service







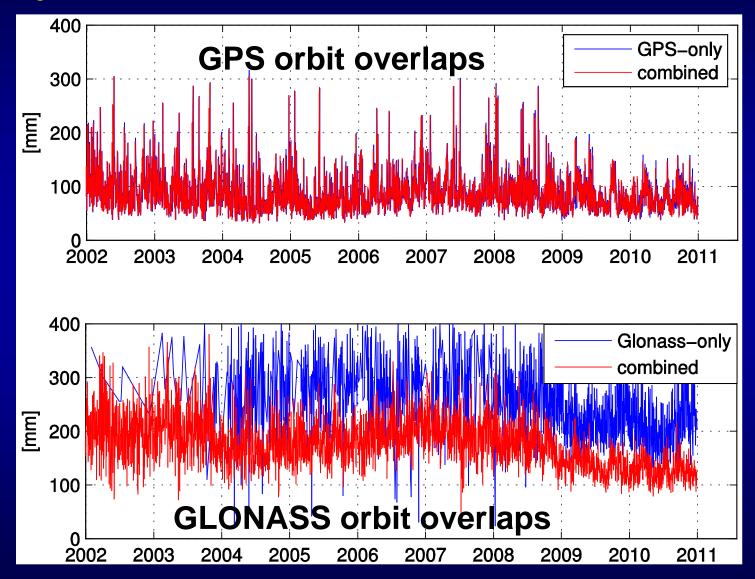
#### What does GGOS expect from the IGS ?

Looking at the GGOS mission, goals, themes we identify:

- Reference Frame (global and regional), GGOS core sites
- Contributions to Theme 2 (geohazards) and Theme 3 (sea level)
- Combination and integration
- Products
- GGOS Portal
- Outreach (mention GGOS at least once per presentation)

**IGS products are also GGOS products** 




#### **Reference Frame Issues (Small Long-Term Trends)**

#### • Reprocessing:

- IGS already did a very big and successful effort
- Reprocessing should be possible every few years to allow for homogeneous time series with latest models and param.
- Systematic Biases:
  - Satellite antenna offsets and phase center variations
  - Orbit modeling deficiencies
- Antenna/receiver chances destroy long-term quality:
  - Run new hardware in parallel for some months, even better: have 2-3 permanent antennas and receivers
  - Concept for transition to GALILEO-capable antennas/receiv.



#### Reprocessing of GNSS (GPS, GLONASS, SLR) Project with TU Dresden, ETH Zürich, AIUB, TU München



Eidgenössische Technische Hochschule Züric Swiss Federal Institute of Technology Zurich

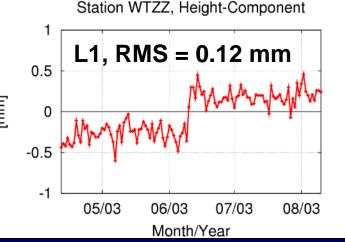


#### Reprocessing of GNSS (GPS, GLONASS, SLR)

Earth rotation parameters compared to the IGS series RMS differences for the year 2010 (~19 Glonass sat.):

|                         | Glonass-<br>only solution | GPS-only<br>solution | Combined solution |
|-------------------------|---------------------------|----------------------|-------------------|
| XP [0.001"]             | 0.356                     | 0.080                | 0.075             |
| YP [0.001"]             | 0.338                     | 0.089                | 0.086             |
| XP rate<br>[0.001"/day] | 0.553                     | 0.245                | 0.227             |
| YP rate<br>[0.001"/day] | 0.649                     | 0.252                | 0.241             |
| LOD<br>[ms/day]         | 0.262                     | 0.128                | 0.115             |




## **GNSS at GGOS Core Sites**

#### **Characteristics:**

- 3 antennas and receivers to allow for equipment changes
- Tracking all GNSS (GPS, GLONASS, GALILEO, COMPASS, QZSS, ...)
- Real-time capabilities and high-rate data
- Dense L1 network for atmosphere tomogr.

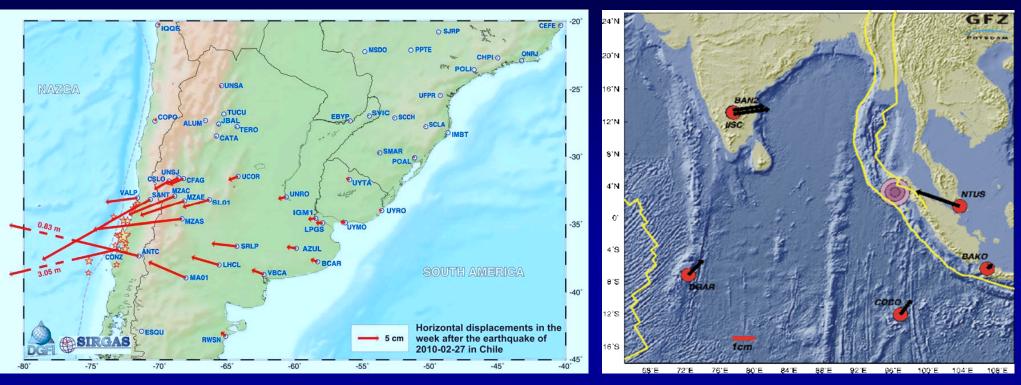








**Sensor Station (GESS)** 


#### Wettzell antenna array: monitoring equipment change

ETH Eidgenössische Techni

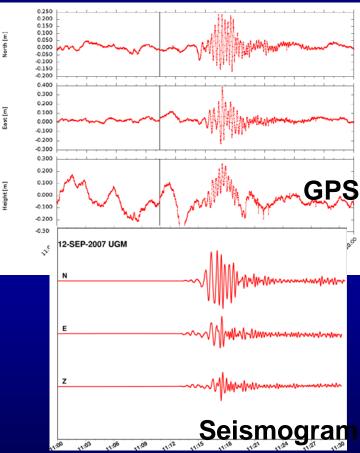
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



#### **Theme 2: Displacement/Deformation Service**



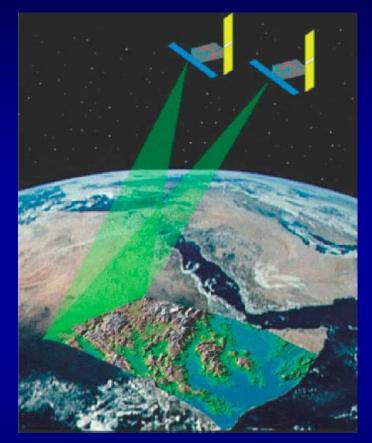
#### Earthquake in Chile, Feb. 27, 2010 (DGFI)


#### in Sumatra, Dec. 26, 2004 (GFZ)

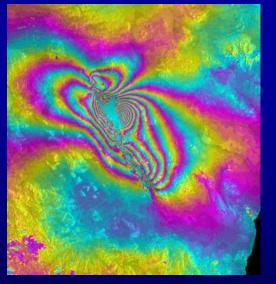
- Events show that a fast reaction to natural hazards is important also on the global level
- Real- or near real-time global displacement service of the IGS should be established; include also long-term deformation

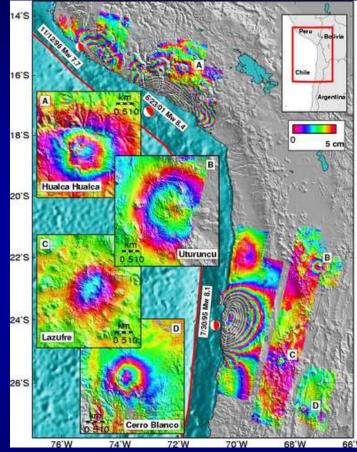


#### **Theme 2: Displacement/Deformation Service**


- IGS real-time developments extremely important
- High-precision predicted GNSS orbits and clocks essential for many applications:
  - Early warning systems
  - High-precision orbits for LEOs (e.g. crucial for InSAR)
- High-rate GNSS data (10-100 Hz):
  - Buffering: transfer of high-rate data only in case of an interesting event
  - Monitoring of seismic waves (GNSS seismology)
  - Earthquake magnitude, earthquake rupture process, better tsunami prediction




#### Combination GNSS / seismology




#### Theme 2: Displacement/Deformation Service InSAR for Densification of Earth's Geometry



Hector Mine earthquake (Courtesy G. Peltzer, UCLA)





Volcanoes in the Andes (Pritchard & Simons, 2002)

#### Combination GNSS / InSAR



idgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

#### **Combination and Integration**

- Combination is the essence of GGOS: better reliability / accuracy
- Combination within the IGS:
  - Generation of daily SINEX files and combination thereof
  - Converge on common standards for troposphere modeling and estimation to allow for a combination of the troposphere parameters
  - Height inconsistencies not absorbed by the troposphere parameters
- Combination with other space-geodetic techniques:
  - Combination of daily SINEX files with VLBI, DORIS, SLR: site coordinates, ERPs, troposphere parameters, ...
- One common clock for GNSS, VLBI and ...
  - Clocks getting more and more accurate (GIOVE-B, ...)
  - GGOS core sites should establish a unique time reference at the site
  - "Local ties" for geometry, troposphere and time for combination
- Unified Analysis Workshops (UAW): next planned in 2013



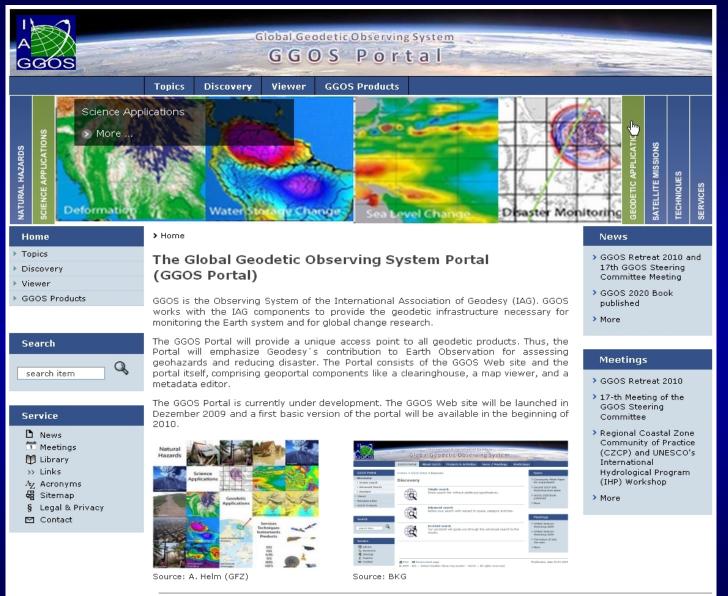
## **IGS Products for GGOS (Earth Observation)**

# IGS extremely important for GGOS, contributing a large variety of observational data and relevant products

#### Direct IGS Products (global): $\rightarrow$ products ready for users

- Reference frame contribution, ITRF realization
- Global site coordinates, velocities and displacements → simple format
- GNSS orbits and clocks; **DCBs and ISBs**

for time series


- Earth rotation parameters

#### Indirect Products made possible by IGS (regional/local):

- LEO orbits for gravity, altimetry, InSAR and other missions high-rate data
- Local/regional atmosphere sounding and monitoring



#### **GGOS Portal (BKG): Main Page**



📇 Print 🛛 🖸 Recommend page

© 2010 - IAG :: Global Geodetic Observing System - GGOS :: All rights reserved.

Modification date: 20 Jan 2010



ETH

#### **GGOS Portal (BKG): Metadata is crucial**

| FILENAME         | DGF07063L7_b03.snx.gz                                                          |
|------------------|--------------------------------------------------------------------------------|
| TITLE            | GGOS-D DGFI SLR solution 2nd iteration version b03 (GFZ)                       |
| ALTERNATETITLE   | GGOS-D DGFI SLR solution                                                       |
| ABSTRACT         | Weekly SINEX file of DGFI SLR solution for GGOS-D (single technique solution). |
|                  | Standards, models and parameterization are choosen with                        |
|                  | respect to the GGOS-D conventions for the 2nd iteration.                       |
|                  | With the strict use of common standards within GGOS-D                          |
|                  | a consistent reprocessing and combination of the space                         |
|                  | geodetic techniques should be achieved.                                        |
| IDENTIFIER       | DGF07063L7_b03                                                                 |
| STATUS           | completed                                                                      |
| LANGUAGE         | en                                                                             |
| CHARSET          | 8859part2                                                                      |
| DATE             | 2007-11-13 13:46:18                                                            |
| DATETYPE         | creation                                                                       |
| FORMATNAME       | SINEX                                                                          |
| FOMATVERSION     | <mark>2.00</mark>                                                              |
| MEDIUMNAME       | onLine                                                                         |
| LINKAGE          | ftp://ftp.ggos-d.de/data/test/2004/GFZ/GFZ07063L7_b03.snx.gz                   |
| TOPICCATEGORY    | Geoscientific Information                                                      |
| THESAURUSNAME    | GCMD Keywords                                                                  |
| THESAURUSDATE    | 2008-02-07 17:44:52                                                            |
| THESAURUSLINKAGE |                                                                                |
| THESAURUSORGNA   |                                                                                |
| KEYWORDS         | Solid Earth > Geodetics/Gravity > Gravitational Field,                         |
|                  | Solid Earth > Geodetics/Gravity > Polar Motion,                                |
|                  | Solid Earth > Geodetics/Gravity > Reference Systems,                           |
|                  | Solid Earth > Geodetics/Gravity > Rotational Variations,                       |
|                  | Solid Earth > Geodetics/Gravity > Satellite Orbits,                            |
| FEFS             | SLR > Satellite Laser Ranging                                                  |

**FEES** 









#### How does IGS benefit from GGOS ?

- Higher visibility through the GGOS umbrella and the GGOS portal
- Coordination of the IAG Services: common goal, synergies, ...
- Connections to high-level international institutions like
  - Group on Earth Observation (GEO) with GEOSS: IAG/GGOS is member
  - Committee on Earth Observation Satellites (CEOS): GGOS is member now
  - Other global observing systems: GTOS, GCOS, GOOS, IOC, ...
- Improved fund rising potential (example GGOS core sites, VLBI)
  - → Renewal of IGS infrastructure, PBO, EPOS, Australia, ...





## **Example: GGOS Core Sites**

#### **Positive Developments:**

First really new infrastructure since about 15 years:

- → IAG Services (e.g., VLBI2010, SLR)
- $\rightarrow$  Argumentation with GGOS

#### **New GGOS Core Sites:**

- Austrialia/New Zealand: 4 new core sites
- Wettzell, Germany: new twin and SLR telescopes
- Spain/Portugal: 4 new VLBI sites funded
- Norway, Finland, Sweden: proposals
- NASA: prototype site; proposal for 10 sites planned
- Russia, China, Korea: several sites planned



Wettzell: twin telescopes and new SLR



#### Conclusions

- A better Earth monitoring is required to understand the Earth as a system
- **GGOS is the geodetic contribution to GEO and to GEOSS**
- GGOS components in place, organizational structure improved, work on implementation
- IGS contributes a very large variety of direct and indirect products
- IGS challenges important for GGOS:
  - Very efficient reprocessing capabilities
  - Real-time products for early warning systems, etc.
  - Further steps in combination work
  - Availability of metadata and user-friendly access to products



#### Thank you for your attention !



#### **Global Geodetic Observing System International Association of Geodesy**

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

