GGQS

Vision for the IGS

Markus Rothacher GeoForschungsZentrum Potsdam (GFZ)

IGS Workshop 2006 "Perspectives and Visions for 2010 and beyond"

> May 8-12, 2006 Darmstadt, Germany

IGS Workshop 2006, Darmstadt, Germany, May 8-12, 2006

Contents

- GNSS Developments: GALILEO / GPS III / GLONASS
- Real-Time Products and Monitoring
- Integration of LEO Constellations
- GGOS: Consistency and Combination
- GGOS: Integration and Modeling

GNSS Developments

- Equipment of global IGS stations with receivers collecting data from all GNSS (GPS, GLONASS, GALILEO, QZSS, ...)
- Develop the capabilities to process all GNSS systems together with the highest quality possible:
 - Refined ambiguity resolution algorithms
 - Making use of all available observation types
 - Monitoring of the biases between observation types
 - Monitoring of biases between the systems
 - Antenna phase center calibration ...
- Deliver the best, most accurate and consistent GNSS products (orbits, clocks, EOP, atmosphere, DCBs, ...) in the world
- Support the GPS/GALILEO/GLONASS responsible with intersystem information

Real-Time Products and Monitoring

- Establish a dense real-time network of GNSS stations
- Develop capability to transfer 10-20 Hz data if something has happened: real-time monitoring (else 1 sec data)
- Develop real-time data processing for real-time IGS products (including combination ???)
- Establish efficient and easy-to-use product flows to the users
- Real-time processing of all GNSS data for:
 - Global GNSS orbit and clock products, reference frame monitoring
 - Integrity monitoring, integrity information (?)
 - Early warning systems
 - Deformation monitoring
 - GPS seismology (measuring the site motion during an Earthquake)
 - Atmospheric applications (water vapor, space weather)

Integration of LEO Constellations

Inclusion of LEO satellites into the global IGS processing:

- More and more constellations of LEOs with GNSS receivers (GRACE, COSMIC, SWARM, ...)
- Form a constellation of GNSS-LEO-satellites in space with an internal orbit accuracy of the constellation of 1-2 mm over 13'000 km (due to ambiguity fixing)
- Improvement of:
 - GNSS satellite orbits and clocks
 - Center of mass determination
 - Gravity field variations of low-degree harmonics coefficients
 - Combine gravity field and geometry; vertical datum definition
- Monitoring of mass transport and mass distribution with gravity missions in the constellation

Vision 2010: Intergation of 4 Levels into a GGOS

IGS Workshop 2006, Darmstadt, Germany, May 8-12, 2006

GG

GGOS: Consistency and Combination

- IGS should have full reprocessing capabilities/capacity:
 - Extremely important for reference frame contributions to IERS/GGOS
 - Enough individual IGS ACs to participate
 - Including intra-technique combination of products
 - Very efficient processing algorithms and computer facilities
- Combination of products for IERS/GGOS:
 - Daily SINEX files including coordinates, EOPs and troposphere for rapid and final products
 - Combination of daily SINEX files into IGS combined products
 - Increase consistency for the combination (esp. troposphere)
 - Basis for the inter-technique combination (e.g. with VLBI Intensives etc.), faster availability (→ real-time)

Present and Future Combination

Parameter space for a rigorous combination:

	Parameter Type	VLBI	GPS/ GLON.	DORIS/ PRARE	SLR	LLR	Alti- metry
CRF ITRF Atmosp	Quasar Coord. (ICRF)	Х					
	Nutation	Х	(X)		(X)	Х	
	Polar Motion	Х	Х	Х	Х	Х	
	UT1	Х					
	Length of Day (LOD)		Х	Х	Х	Х	
	Coord.+Veloc.(ITRF)	Х	Х	Х	Х	Х	(X)
	Geocenter		Х	Х	Х		Х
	Gravity Field		Х	Х	Х	(X)	Х
	Orbits		Х	Х	Х	Х	Х
	LEO Orbits		Х	Х	Х		Х
	lonosphere	Х	Х	Х			Х
	Troposphere	Х	Х	X			Х
	Time/Freq.; Clocks	(X)	Х		(X)		

Earth Rotation Gravity Field

GFZ

GGOS: Integration and Modeling

- Participate in the GGOS modeling efforts:
 - Contributions from all IAG Services and Commissions are needed to jointly work on a 4D-Model of the Earth System
 - Together with other disciplines (geophysics, oceanography, meteorology, climatology, glaciology, ...)

GGOS Modeling /Interpretation (4D Earth System Model)

GFZ

IGS Workshop 2006, Darmstadt, Germany, May 8-12, 2006

GG

Modeling of System Earth: Earth Rotation/ Deformation

IGS Workshop 2006, Darmstadt, Germany, May 8-12, 2006

