

Compensation of Ionospheric Effects for Frequency and Time Comparison using the ACES Microwave Link

Wolfgang Schäfer (TimeTech, Stuttgart)

- S. Feltham, I. Aguilar (ESA/ESTEC, Noordwjik)
- A. Seidel, M. P. Hess (EADS, Friedrichshafen)

This work is performed under ESA contract 16242/02/NL/JS.

MWL Applications

- Space-Ground
- Ground-Ground Common View

 Ground-Ground Non-Common View

ACES: Clocks Involved

MWL System Aspects

- Clocks "as is"
- Orbit
 - Distance
 - Velocity
 - Acceleration
- Signal Link
 - Ionosphere
 - Troposphere
 - Multipath
- Environment

 Temperature

Performance Requirements (TDEV)

- Short Term: <u>230 fs / pass</u>
 - Driven by Maser: one pass (300s)

 $\sigma_x (10 \text{ s} \leq \tau \leq 300 \text{ s})_{MWL} \leq 4,1 \times 10^{-12} \times \tau^{-1/2}$

Long Term: <u>5.5 ps / orbit</u>, 16 ps / 10 d
 Driven by Pharao: > 1 orbit

 σ_x (1orbit < τ < 15 days)_{MWL} \leq 1,7 \times 10⁻¹⁴ \times $\tau^{+1/2}$

Principle of TWSTFT (Ground – Ground)

Double Difference between simultaneous measurements Direct read-out of time-dfference between remote clocks Well established method for ground-ground and ground-space

Benefits from Bi-directional Link

- Directly measure Time Difference (<u>do not model</u>)
- Works equally well for Ground-Ground and Ground-Space Links
- Allows for Clock Monitoring without knowledge of the orbit
- Provides (precise) Time- and (accurate) Frequency comparison
- Independent from relative
 - Location
 - Distance
 - Velocity
- Inherently includes Ranging function (sum of up- und down-link)
- Elegant separation between Clock- and Orbit Errors
- Residual Errors are due to Link- and other Asymmetries
- Design Tasks:
 - Minimise amount and value of Asymmetries to best extent
 - Detect and correct for each Asymmetry
 - Perform direct measurements rather then rely on modelling
 - Do not rely on orbit data (attitude data is required only, S- vs. Ku)

Extend TWSTFT to operate in dynamic environment

- Continuous PN coded emissions and signal reception
- Fully coherent signals: code, carrier & measurements
- High Chip-rate 100 MChip/s to suppress potential Multi-path
- High Carrier Frequencies
- High ratio between the two frequency bands
 - 1. Ku Code + Carrier phase (at both ends)
 - 2. S Code + Carrier phase (at ground)
 - 3. Count carrier cycles differentially (ground)
 - 4. Perform Carrier Cycle Identification
 - 5. Time-tag all data w.r.t. local clock
 - 6. Evaluate asymmetries

Signal Links, Ku up/down + S-band

Operations and Time-Tagging

Band	Ku-Band	S-Band
Received C/No @ 10°	~47.8 dBHz	~50 dBHz
Carrier noise @ 1s, 10°	0.09 ps	0.45 ps
Carrier Doppler, max.	+/ - 400 kHz	+/ - 58 kHz
Carrier Doppler rate, max.	6.5 kHz/s	1 kHz/s
Code noise @ 1s, 10°	29 ps	2.23 ns
Code Doppler, max	+/ - 2700 Hz	+/ - 27 Hz
Code Doppler rate, max	44 Hz/s	0.4 Hz/s

Coherent Signal Generation

Full coherency to ext. reference & carrier phase stabilisation scheme

Continuous Delay Monitoring

Calibration Mixers in each equipment (Space and Ground) Continuous monitoring of equipment delay, even during pass Covers code- and carrier phase Allows in-flight (re-)calibration of AM/PM and delay vs Doppler

Match Up- and Downlink Paths

Asymmetry due to mismatch between Up- and Downlink path lengths

- Asymmetry corrected by post-processing (Lambda Configuration) a) Delay Variation (curvature)

 - b) proper shifting of time tags along orbit

Ionosphere Detection and Removal

ONLY the Difference between Ku-band Up- and Down-link is relevant

- Total Effect in Ku-Band:
- Difference between Up/Down:

٠

Total electron content (TEC) affects time transfer pass-to-pass

Measure TEC by S-band versus Ku-band code-phase

800 .. 1100 ps

150ps (max), 22ps (avg)

- Change of TEC affects **frequency transfer stability** within one pass
- Use two independent methods to measure TEC variation

S-band versus Ku-band differential carrier-phase (dual band)

DRVID: Differenced Range vs Integrated Doppler (single band)

- Corrections are derived for each signal link, separately for each G/T
- DRVID detects multi-path (presence & level) at the same time

Dual Frequency Differential Phase vs DRVID

Use of DRVID to detect Signal MP (PRARE ERS-2)

- Measured date, single pass, left to right
- General curvature, start to end of pass: TEC variation
- Noise increase mid to end of pass: MP due to solar panel

Determine absolute S vs X Delay (PRARE, ERS-2)

- Absolute Dealy Calibration in flight for each Ground Station
- Use curve fitting between measured Range- and TEC variation
- Value is constant during mission: Long integration time

Ground Terminal Layout (PRARE)

- Antenna 40 cm dia
- T&F reference
 - 100 MHz
 - 1pps
 - NTP & LAN

 Local Sounding of lower lonosphere

even without good ground clock

receive-only mode possible

Performance Perspective: TDEV [ps]

Conclusions

- Key Elements and concepts verified during previous Missions (PRARE) and TWSTFT / Ranging Applications (SATRE)
- ACES MWL Phase B finalised
- MWL-FS Demonstration Model built, presently under functional and performance verification
- No major showstoppers found
- Next Phase until Spring 2007 leads to the Engineering Model

This work is performed under ESA contract 16242/02/NL/JS.