

GALILEO GIOVE-A Mission

ESA/ESTEC

D. Navarro, M. Tossaint, J. Hahn, M. Falcone

page 1

esa

GIOVE Objectives

- Galileo In Orbit Validation
 Element
- Support Galileo Frequencies
 Filing Notification.
- Test Payload technology inorbit:
 - Clocks and Monitoring Control Unit
 - Navigation Signal Generator Unit
- Provide the first GALILEO Signal-in-Space.
- Characterize MEO radiation environment.

esa

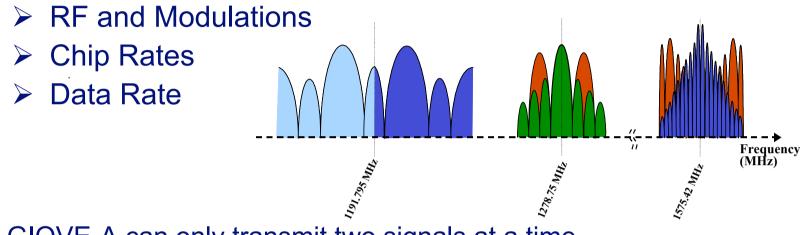
GIOVE-A Satellite

Lift-off mass 649 kg Power demand 700 W Stowed Dimensions: 1.3 m x 1.8 m x 1.65 m Solar arrays: 6.8 m² Semi-major axis: 29635 km Inclination: 56 deg

- Successful orbit injection by Soyuz-Fregat from Baikonur on 28th December 2005
- Payload switch-on 10th January 2006
- From 12th January the first Galileo Navigation signals have been broadcast from Space
- First Objective achieved: GALILEO Frequencies Filing Notified to ITU

GIOVE-A Payload

Navigation Signal Generation


- Timekeeping system
 ✓ 2 RAFS
- Signal Generator Chain
 - ✓ 2 x CFI Signal Generator Chain (ESA managed)
 - ✓ SSTL Signal Generator Chain
- Transmit chain: TWTA, Coupler, Diplexers
- > Antenna (Alenia)

GIOVE-A SIGNAL

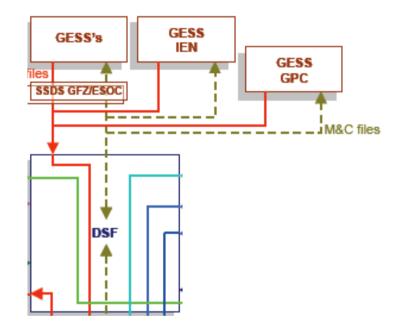
• GIOVE-A SIS is fully representative of GALILEO SIS:

- GIOVE-A can only transmit two signals at a time (L1+E5 or L1+E6)
- GIOVE-A codes are different from GALILEO codes
- GIOVE-A Navigation Message not representative from structure and contents viewpoint (demonstration only purpose)

•eesa

- Early demonstration of the navigation service (generation, uplink, and broadcast of navigation message)
- On Board Clock Characterisation
- Sensor Station Characterisation (interference and multi-path characterisation)
- Validation of Galileo Ground Segment Models

• esa


Core Infrastructure

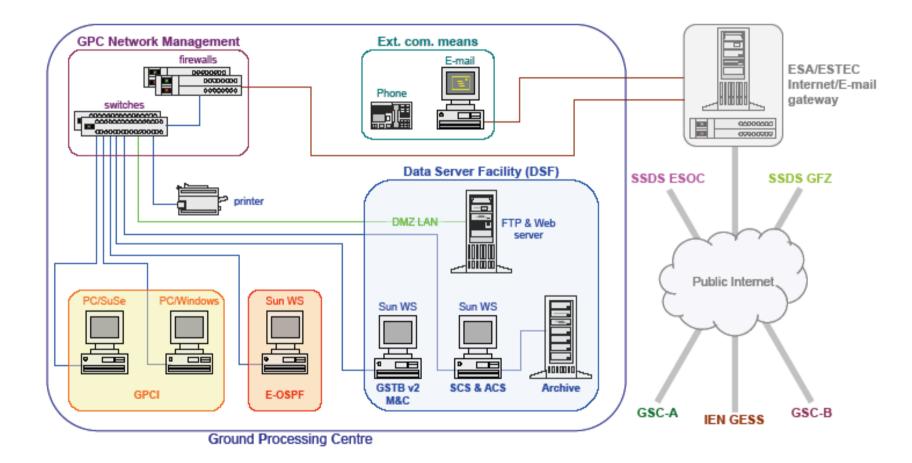
Architectural Design

(1) the "Env. Data" are the re-constituted environmental information built

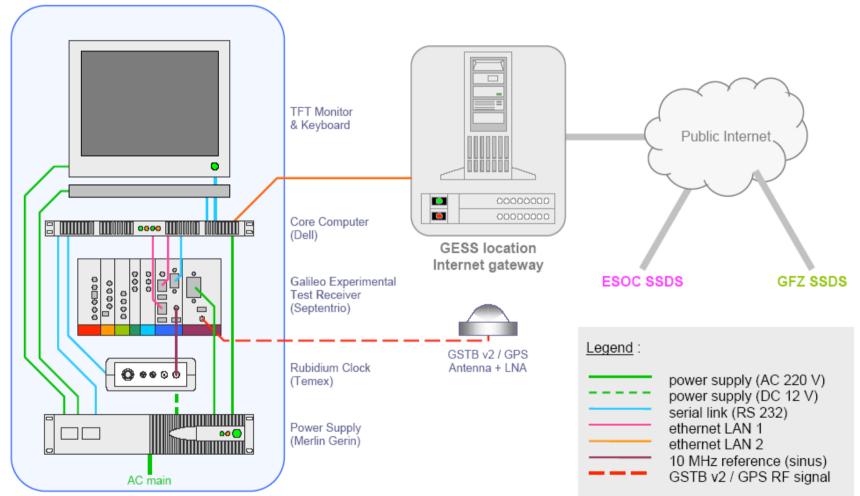
M telemetry.

page 9

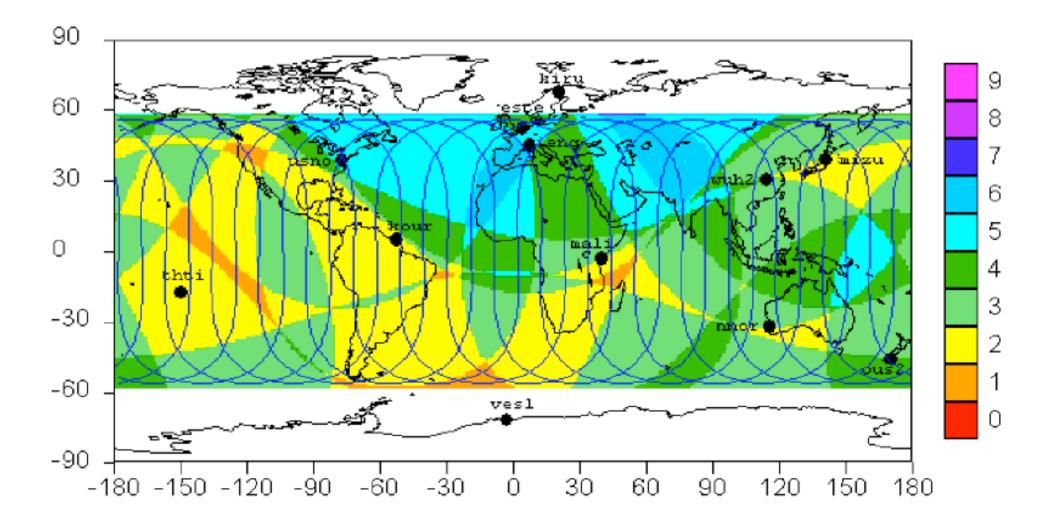
• Routine Navigation Message generation


Step	Description	Periodicity	Data ageing (best case)	Total ageing (best case)	
1	Nominal data file building	Every 15 '	-	-	
2	Nominal data file compression	Every 15 '	< 1 '	11	GESS
3	Transfer to the space polled by the SSDS	Every 15 '	< 1 '	2 '	GESS
4	SSDS polling on the GESS FTP server	Every 5 ' (TBC)	< 1 '	3 '	
5	SSDS retrieving of the file on a temporary storage space	~ Every 15 '	< 7 '	10 '	SSDS
6	Transfer to the space polled by the DSF	~ Every 15 '	< 1 '	11 '	

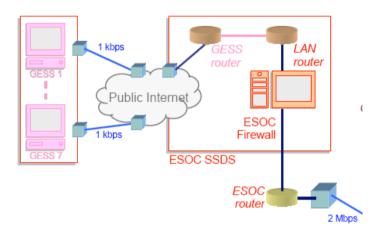
GPC Hardware

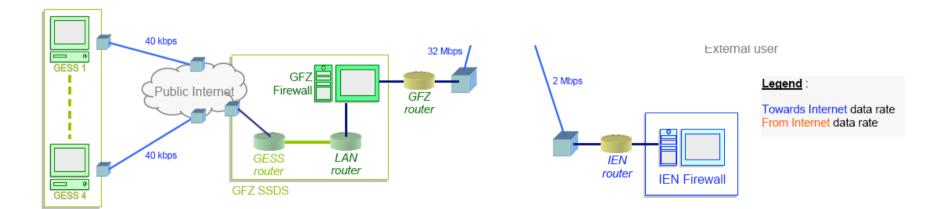


GESS Hardware

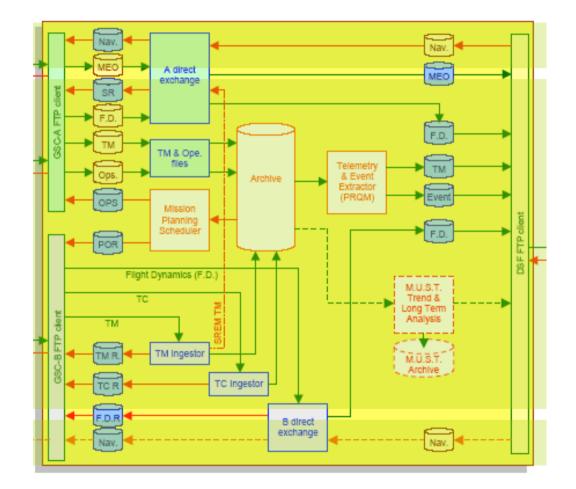

Galileo Experimental Sensor Station

GESS Locations




page 13

Communication Network



GPCI Design

Objectives

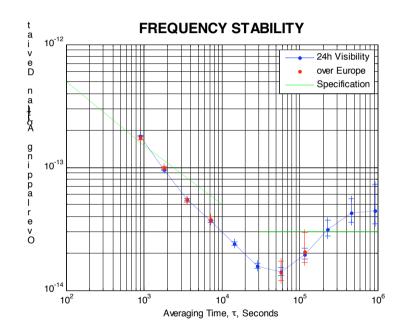
• esa

To carry out a preliminary characterisation of the O/B clocks

Available Infrastructure

- > 2 GESS: at ESTEC (Noordwijk) and INRIM (Torino)
- GIOVE Processing Centre at ESTEC

• Time Line


- Starting from 15th May: GESS Signal quality assessment during first week
- Starting from 22nd May: Processing of Orbits and Clocks for 6 to 8 weeks

• esa Expected Performance in First Campaign

- According to analysis based on using a Glonass s/c as a mock-up for GlOVE, the available infrastructure (2 stations in Europe) would allow to determine
 - Orbits with a precision of 200 cm
 - Clocks with a precision of 4 ns
- This performance can be drastically improved by using SLR* data which would provide
 - Orbits with a precision of 20 cm
 - Clocks with a precision of 0.4 ns
- Due to clock data gaps (2 stations in Europe), Allan deviation will present gaps at some intervals. However the RAFS behaviour can be fully characterized:
 - Short term results are fully representative
 - Long term stability can be assed from the data.

Contribution from/to GNSS Community

- GIOVE Mission has adopted IGS Standards:
 - ➢ SINEX, SP3, RINEX clock...
 - ➢ RINEX 3.00
 - \checkmark Galileo has cooperated in the creation of RINEX 3.0 observable file
 - ✓ GIOVE mission will help validate
 - ✓ Galileo RINEX Navigation to be confirmed after SIS ICD publication
- **TEQC** enhancement for **RINEX** 3.0

Opportunity for GNSS Community

- GIOVE-A SIS ICD publicly available in June 2006
- Possible participation of IGS members
 - Deployment of receivers at IGS sites
 - ✓ Access to Galileo Signal through GIOVE observables
 - ✓ Enhancement GIOVE Mission Segment

eesa

Opportunity for ILRS Community

GIOVE-A Laser Retroreflector Characterisation

- Made by IPIE (supplier for GLONASS and GPS)
- ≻ 76 cubes (27 cm Ø)

•eesa

Return about 10% better than GPS

Enhancement of SLR stations

Changchun station refurbishing procured by NRSC of China

- GIOVE-A signals are fully representative of GALILEO Signals and have been brought into use
- Importance of the GIOVE Mission
 - Onboard Clock Characterisation
 - Sensor Station Characterisation
 - Feedback into Galileo System Development
- GIOVE represent opportunities for both IGS and ILRS
- GPC and 2 GESS installed and tested
- First Tracking Campaign
 - Preliminary Clock Characterisation
 - > Use of SLR data contributes significantly to campaign success
- More info soon available at www.giove.esa.int

