New GNSS Developments & the Impact on Providers & Users of Spatial Data Infrastructure

C. Rizos

IGS Workshop, Darmstadt, Germany, 8-11 May 2006

School of Surveying & Spatial Information Systems The University of New South Wales, Australia

 Modernization of GPS
Revival of GLONASS
Deployment of GALILEO
Regional SBAS

Global Navigation Satellite Systems (GNSS)

GLONASS

GPS

GPS ... the old & the new

For the next decade there will be several generations of GPS signals ...

- GPS-IIR: L1 C/A code, L2 codeless
- GPS-IIRM (8): L1 C/A code, L2C code
- GPS-IIF (16): L1 C/A code, L2C code, L5 code
- GPS-III (30): L1C code, L2C code, L5 code
- Receiver costs should drop for some signal combinations, but complexity will rise (in antennas, HW, SW).
- What will NOT change is tight U.S. military control over GPS space & ground segments.
- > No plans for introduction of user charges.

L2C FOC 2012

GPS-III FOC 2017

L5 FOC 2014

GLONASS ... here again!

> 18 satellite constellation by 2008 (earlier?)...

- GLONASS: dual-frequency (L1 & L2 'bands')
- GLONASS-M: dual-frequency
- GLONASS-K: triple-frequency (L1, L2 & L5 'bands')
- Combined GPS+GLONASS receivers for highend users already have 'market advantage'.
- Similar operational model to GPS, ie military control & no user charges.

GALILEO ... here it comes!

- > 30 satellite constellation by 2011(?)
- Single generation of signals/satellites.
- Three frequency bands, & up to 10 trackable signals... but not all are 'open'.
- Four levels of service: (a) fee-based to guarantee certain level of performance (e.g. *integrity* for SoL users, *accuracy* for CS), (b) free OS to match GPS/GLONASS, & (c) restricted PRS.
- 'Private-Public Partnership', implying new business model for GNSS services & possible implications for DGNSS, etc.

SBAS ... "alphabet soup"

Regional augmentations: (a) aviation & (b) non-aviation

- Augmentations for increased availability, integrity & accuracy.
- Aviation: WAAS, EGNOS, MSAS, GAGAN ---> L1 & L5 (eventually).
- Other: QZSS L1, L2, L5, ??? More?
- > Unclear what these can contribute to highend (CPH) users.

- GPS is currently unchallenged where signal availability & quality is good.
- Increasing use of GPS+GLONASS for high accuracy applications.
- Trend for highend (high accuracy) users to no longer be just surveyors, but they need reliable levels of performance...
- Next generation GNSSs & augmentation systems will improve performance.
- Ideal scenario for highend users is combination of ALL available signals, from all GNSSs.
- Challenges of transitioning from current GPS to multiple GNSSs.

From GPS to GNSS ...

- Assumption: survey/highend users seek best value ... balance cost with performance
- > Use multi-GNSS receivers, to improve availability.
- Use multiple-frequency receivers, to improve accuracy & Time-to-AR for CPH-based techniques.
- ➢ Will still need reference networks for DGNSS.
- Variety of Service Providers, different scales/coverage/markets & business models.

Multi-Frequency Performance...

- High accuracy* --> with longer baselines or PPP.
- Less CORS infrastructure* --> longer baselines.
- Improved efficiency (via faster TTFF/TAR)* --> CPH-based cm/dm accuracy solutions with a few epochs of data.
- Less vulnerability[#] --> different signal options if there is interference/jamming.
- Improved reliability # --> redundant (a) measurements, (b) signals, & (c) frequencies.

*TF combinations are used...*not single measurements* #Independent measurements...*not linear combinations*

By 2010...

- GPS Modernization 3 civilian signals for 10 sats (Block IIF), all 8 Block IIR-M sats.
- Mixed generations of GPS & GLONASS, can old Rxs track new L2C signal in codeless mode? When will new Rxs stop tracking "old" L2 signals?

- Europe's GALILEO FOC?
- Some SBAS sats, e.g. Japan's QZSS
- No full triple-frequency overlap amongst all GNSSs, have to use combined processing (as in GPS/GLONASS now)
- Unclear situation re GALILEO tracking of all frequencies
- Getting "inside" GALILEO Regional Element
- CORS networks, from "Ad-Hoc" to "Infrastructure"
- > 2010 GNSS will have 50-60 satellites giving:
 - Surveying initialisation for cm accuracy in 1 sec
 - Urban canyon availability 80% (up from 15%)
 - Premium GALILEO CS 0.1m from handheld Rx

By 2015...

- GPS Modernization FOC 3 civilian signals for >24 sats.
- Triple-freq GPS FOC 3-5 yrs(?) after GALILEO
- No more Block IIA/IIR sats operating.
- Half GPS-III sats launched?
- New generation GLONASS sats launched
- GALILEO upgrade sats launched?
- More SBAS sats., e.g. Japan's QZSS, India's GAGAN, China's...?
- No full triple-frequency overlap amongst all GNSSs, but combined processing possible (as in GPS/GLONASS now)
- Less CORS infrastructure?

GPS Surveying Receivers...cm accuracy RT or PP

	L1	L2 codeless	L2C	L5	# sats 2010 # sats 2015	Comments
	28 36	10 0	18 36	10 28	28/10-DF, 10-TF 36-DF, 28-TF	A Can old Rx track L2C in codeless mode?
	28 <mark>36</mark>	-	18 <mark>36</mark>	10 28	18/10-DF, 10-TF 36-DF, 28-TF	В
7	18 36	-	18 36		18-DF 36-DF	С

A: Rx tracks all sats, *highest* availability, *highest cost*, *improvement* in DF-only performance over current system, *no* TF-only positioning until 2015, *best hybrid*.

B: *Moderate cost* Rx, DF-only performance *improved* in 2015, *no* TF-only positioning until 2015, *good hybrid positioning*.

C: *Lowest cost* Rx, DF-only performance (*decreased* performance in 2010, but *improved* in 2015), *no TF positioning possible*.

Decreasing cost

GALILEO¹/GPS² Surveying Receivers...

	L1 ^{1,2}	E6 ¹	L2C ²	E5 ¹ /L5 ²	# sats 2010; # sats 2015	Comments
	30/28 30/36	30 30	18 36	30/10 30/28	60-DF ¹ ,28-DF ² ; 30-TF ¹ ,10-TF ² 60-DF ¹ ,64-DF ² ; 30-TF ¹ ,28-TF ²	A GPS+GALILEO
	30/28 30/36	-	18 36	30/10 30/28	30-DF¹,28-DF²; 10-TF² 30-DF¹,64-DF²; 30-TF¹	B GPS+GALILEO
	30 30	30 <u>30</u>	-	30 30	60-DF ¹ ; 30-TF ¹ 60-DF ¹ ; 30-TF ¹	C GALILEO
	30 30	-	-	30 30	30-DF ¹ 30-DF ¹	D GALILEO

Decreasing cost

A: Top-of-line GNSS Rx tracks all sats, *highest* availability, *highest cost*, *highest* in DF-only & TF-only performance, *best hybrid*.

B: *Moderate cost* GNSS Rx tracks all sats, but does not track E6, GPS TF-only positioning available 2015, *good price/performance compromise*.

C: *Moderate cost* GALILEO-only surveying Rx, TF-only positioning available 2010, unclear if tracking of E6 requires user charges for CS.

D: *Lowest cost* GALILEO-only surveying Rx, DF-only performance (*similar* to current GPS-only performance in 2010), *uses OS signals only*.

NextGen GNSS: Some User Issues...

> Towards more availability, efficiency and reliability:

- L1+L2 Rxs & processing less complicated cheaper Rx?
- L1+L2+L5 will give better accuracy, efficiency & reliability.
- GLONASS has demonstrated advantage of extra sats/signals.
- GALILEO will add all of this again, and more.

> Concerns:

- Cost of upgrade to take advantage of new developments.
- Mixed generations of GPS/GLONASS for many years.
- There are many DF & TF combinations possible, but quality & reliability will be variable unless "pure" TF positioning possible.
- What choice of Rxs will there be? How will to select?
- Can standard RTK-DGNSS operate with multi-GNSS Rxs w/o paying for GALILEO's CS?

NextGen GNSS: Some RefNet/SP Issues...

> Concerns:

- Cost to upgrade ref. networks to handle all GNSS signals.
- Mixed generations of GPS/GLONASS for many years, how to support legacy systems?
- Ref. networks are geodetic infrastructure, but could also support GALILEO "local/regional element".
- Can Ref. networks supporting RTK-DGNSS operate w/o paying for GALILEO's CS?
- How will current SPs compete with the Concessionaire & CS?
- What is the appropriate mix of free & fee-based services?
- The belief that there will be less need for RefNet infrastructure for surveyors may be illusionary, unless all users are forced to TF-only positioning, but then all are vulnerable to loss of tracking of one signal!

Concluding Remarks

• GPS is already a great tool, when signal availability & measurement quality is good.

- NextGen GNSS, will have more satellites, more frequencies & more signals.
- Positioning with NextGen GNSS will be more accurate, more efficient and more reliable, but only if conditions are right (incl. CORS stn. spacing).
- Many unresolved issues with mixed GNSS Rxs & RefNet services, *especially wrt GALILEO*.
- GALILEO's *revolutionary* commercial focus may have a greater impact than the *evolution* of NextGen GNSS.