

ESA/ESOC IGS Network Operations. Present and Future.

ESOC IGS team Presented by C. Garcia (GMV)

IGS Workshop 2006 09-05-2006, ESOC, 1/16

Outline

- Introduction.
- ESOC GNSS network evolution.
- ESA/ESOC GNSS network description.
- IGS data and metadata contribution. Support to different projects and WGs : ultra, rapid, final, iono, real time.
- Impact of IGS recommendations (monumentation, etc)
- Giove (experimental Galileo satellite) network deployment.
- Plans for the future.

IGS Workshop 2006 09-05-2006, ESOC, 2/16

Introduction

• ESA/ESOC role in IGS:

esa

- Data contribution from a small (12 receivers) but growing data network with nearly global coverage
- Analysis Centre contributing to almost all the IGS products: need for all kind of data and metadata (configuration, calibration, etc) distributed through IGS
- Permanent need to update the stations network with enhancements that fulfil the new requirements from all the IGS groups:
 - Data retrieval and availability in real-time, 1 Hz, 15 min NRT, hourly, daily, etc
 - New places like Tahiti, needed to improve the coverage of the RT and the GLONASS networks
 - Permanent GPS only and GPS/GLONASS receivers acquisition to provide local back-up receivers and improve GLONASS network coverage
 - Connection to Hydrogen masers (New Norcia, Cebreros, Kourou planned) or Cesium oscillators (rest of the stations)

IGS Workshop 2006 09-05-2006, ESOC, 3/16

ESOC GNSS Network evolution

- Complete overhaul in the last two years
 - Creation of the Navigation Facility at ESOC
 - At the stations: racks overhaul following integration standards and with remote back-up equipment
 - Communications integration in operational network. Shared with main ESA projects
- Connection to Hydrogen masers from ESA deep space network:
 - Since 2002: New Norcia (Australia)
 - New station in 2005: Cebreros (Spain)
 - Planned: Kourou
- Acquisition in 2005 of 2 new GPS/GLONASS receivers planned for:
 - Tahiti. Installation planned for July 2006
 - Malindi. Installation planned for September 2006
- Improve support to IGS Real Time Network:
 - Complete GNSS network available in RT
 - Installation of a receiver at Tahiti
- EGNOS receiver installed at ESOC in 2005. Part of EGNOS system monitoring network.
 IGS Workshop 2006
 09-05-2006, ESOC, 4/16

ESA/ESOC GNSS network

IGS Workshop 2006 09-05-2006, ESOC, 5/16

IGS GLONASS and Real Time Networks

IGS Workshop 2006 09-05-2006, ESOC, 6/16

ESA/ESOC GNSS data Network

- Current real time streams resulting from migration from ESOC development (own protocol and format) to RTIGS protocol to improve compatibility and data sharing.
- NRT missions support: full 15 min 1 Hz file downloaded if missing data (to be improved to minimize bandwidth requirements)
- Hourly and daily files for IGS data centres generated from 15 minutes 1 Hz data.
- Native binary data is not downloaded to ESOC.

IGS Workshop 2006 09-05-2006, ESOC, 7/16

ESOC data flow

KIRU-KOUR-KOU1-MALI-NNOR-CEBR-PERT-REDU RECEIVER ANTENNA ESOC LINUX PC OSCILLATO udp ESA ESTRACK OPSLAN AshtechReader udp PERMANENT (Solaris) **RTIGS** Archiver LINES Data and UDPrelay metadata Files ftp KIRU-MAS1-(FAAA) INTERNET RECEIVER ANTENNA Relay LAN LINUX PC FIRE (Solaris) OSCILLATOR udp Data and **UDPrelay** metadata AshtechReader Files ftp IGS Global and IGS UDPRelay depository **Regional Data Centres IGS Workshop 2006** Data and UDPrelay 09-05-2006, ESOC, 8/16 metadata Files

IGS data and metadata usage

IGS Workshop 2006 09-05-2006, ESOC, 9/16

Impact of IGS recommendations (1)

Kiruna radome

"Avoid using radomes unless required operationally"

Discontinuity during snow covering and melting still there. Giove monument:

- deeper

esa

- centred in the plateau

• Antenna replacement at Kourou "Moving to another monument must be avoided"

Procedure to follow:

- Replace kour antenna.
- Run the "modified" kour and the "original" kou1 in parallel.
- Estimate the kour kou1 baseline before and after the equipment change
- Replace kou1 with the Galileo equipment.

IGS Workshop 2006 09-05-2006, ESOC, 10/16

Impact of IGS recommendations (2)

Receivers set to track all in view

Problems with bug in some receivers tracking manoeuvring satellites

Add enhancements to try to have "IGS product sites" IGS Sites classification is:

- » IGS Proposed Sites.
- » IGS Provisional Sites.
- » IGS Project Sites.
- » IGS Product Sites.
- » IGS Inoperational.

Archive of native binary data

Not possible due to bandwidth limitations since data files are derived from real time streams

Giove (experimental Galileo) System

GPC: GSTBv2 Processing Centre S-GESS: Standard GSTBv2 Experimental Sensor Station GPC-GESS: GSTBv2 Experimental Sensor Station at GPC UTC-GESS: GSTBv2 Experimental Sensor Station at UTC site DSF: Data Senver Facility GPCI:GSTBv Payload Control Interface E-OSPF:Experimental Ornit Synchronisation Processing Facility GSC: Ground Satellite Control

esa

5 Workshop 2006 206, ESOC, 12/16

Giove Experimental Sensor Stations

esa

esa

IGS Workshop 2006 09-05-2006, ESOC, 14/16

Typical GESS installation

IGS Workshop 2006 09-05-2006, ESOC, 15/16

Plans for the future

- Deployment of Giove ground support network
- Deployment of GPS+GLONASS stations (Tahiti, Malindi)
- Deployment of RT stations (Tahiti)
- Kourou H-Maser
- Continued support to IGS
- Increase number of stations for all contributed products
- Involvement in IGS Real time WG pilot project

IGS Workshop 2006 09-05-2006, ESOC, 16/16