

A proposed new IGS data flow model

A. Moore, C. Bruyninx, C. Noll, M. Scharber

This plan addresses *actual deficiencies* in the current IGS data flow.

It requires agreement and action from all stations' operational centers, all Data Centers, the Central Bureau, and probably Analysis Centers.

However, the logical rules and technical implementation are fairly simple and not burdensome.

Stay with me for a brief tour of the implementation rules, followed by some examples!

Real operational services have real problems

Goal: An outage of a single DC must not result in data unavailability at other DCs.

• Careful micromanagement of data flow by the DCWG chair has minimized this recently, but there is no coherent scheme.

Goal: When a data file is later revised, all DCs must end up with the proper latest version.

• Revisions should be minimized by design! However, we acknowledge that a zero-tolerance policy is not feasible and design data flow to accommodate.

We think our data flow design solves these issues.

A couple definitions clarified here

Operational Center (OC): makes a station's data available to the IGS community. A station may be its own OC in some cases. An OC pushes data to DCs.

Operational Data Center (ODC): An OC that offers public access to data from a set of stations.

More definitions are in the position paper.

Preliminaries

- OCs will select 2 DCs of any level: one primary and one secondary. The most upstream one will be primary. They will be listed in section 13 of the site log.
 - 13. More Information

 $\overleftarrow{}$

IGS

Primary	Data	Center	:	GDC1

Secondary Data Center : GDC2

• RDCs will select 2 GDCs to be their primary and secondary upstream DCs.

Preliminaries

 $\overset{\frown}{\sim}$

IGS

 The CB will collect and combine this information, and publish a table giving the primary and secondary DC for each station/OC and RDC.

OC	Primary	Secondary	<station name="AAAA"></station>
	DC	DC	<pre><primary dc="">GDC1</primary></pre>
			(primary Develocity primary Dev
AAAA	GDC1	RDC1	<secondarydc>RDC1</secondarydc>
BBBB	RDC1	RDC2	
OC1	GDC2	RDC2	
OC2	RDC2	ODC2	<station name="BBBB"></station>
			<primarydc>RDC1</primarydc>
DC	Primary	Secondary	
	DC	DC	<pre><secondarydc>RDC2</secondarydc></pre>
	DC 	DC 	
 RDC1	DC GDC1	DC GDC2	
 RDC1 RDC2	DC GDC1 GDC1	DC GDC2 GDC3	
 RDC1 RDC2 ODC1	DC GDC1 GDC1 RDC1	DC GDC2 GDC3 RDC2	<pre>RDC2 <oc name="OC1"> <primarydc>GDC2</primarydc></oc></pre>
 RDC1 RDC2 ODC1 ODC2_	DC GDC1 GDC1 RDC1 GDC1	DC GDC2 GDC3 RDC2 RDC1	<pre>RDC2 <oc name="OC1"> <primarydc>GDC2</primarydc> <secondarydc>RDC2</secondarydc></oc></pre>

Rules

- All DCs sleep (wait) 5 minutes before acting on a file pushed to it on a secondary path.
- Any data *pulled* becomes a *private copy* and must not be published or pushed.
- Data is regarded as *read-only*.

☆

IGS

Here come the flowcharts

On file replacement

The scheme ensures the latest version is archived everywhere. But how do users learn about a replacement?

 $\overleftarrow{}$

IGS

- The OC can send out a standardized message on a special purpose mailing list, noting the reason, or
- The OC can put a comment in the RINEX header noting the reason, or
- The OC can transmit a standardized separate file noting the reason.
- DCs can log all replacements with the stated reason (or "unknown". The entire log can be made available, and additions can be sent to subscribed users.

The downside(s)

• There *are* some extra transmissions which get discarded.

 $\overleftarrow{}$

IGS

- There *is* some overwriting of files with possibly equivalent versions, especially after a DC outage.
 - Cannot figure out how to prevent this without going to a unique filename (version) approach or requiring the DC to open up and examine the file.
- These are negatives associated with a high degree of certainty that all DCs have the "correct" file, and that data is available when a DC is down.
- Note that most hourly data is doubly transmitted now.

Nominal implementation

- Confirm current data flow for each station/OC
- Define primary & secondary DCs for each station/OC
- OCs, ODCs, RDCs, GDCs prepare to transmit and/or receive data on primary and secondary paths
- GDCs implement data equalization rules
- Test

న

IGS

• Go

Recommendation: Pursue this model.