

swisstopo

Bundesamt für Landestopografie Office fédéral de topographie Ufficio federale di topografia Uffizi federal da topografia

Determination and Use of GPS Differential Code Bias Values

S. Schaer¹, P. Steigenberger²

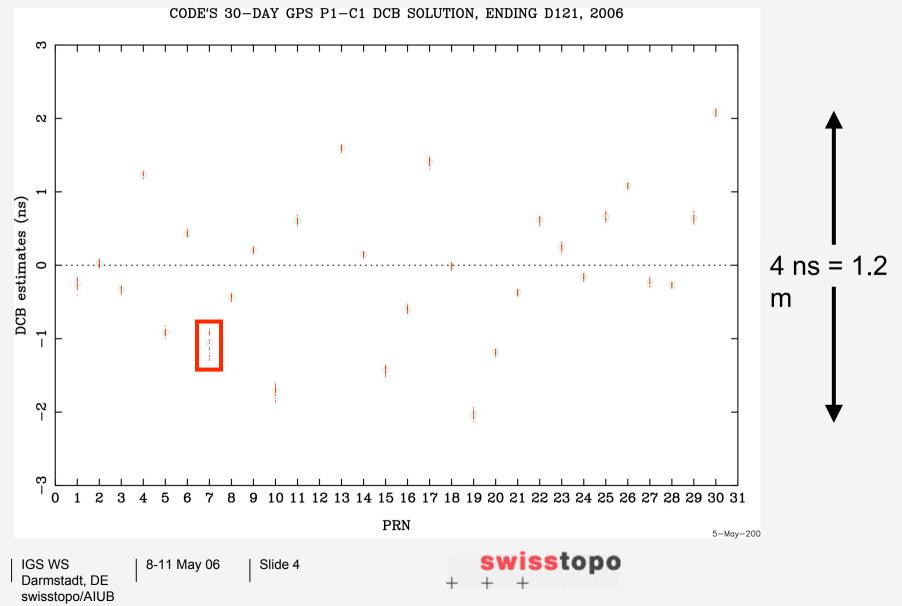
¹swisstopo/AIUB ²GFZ

Introduction (1)

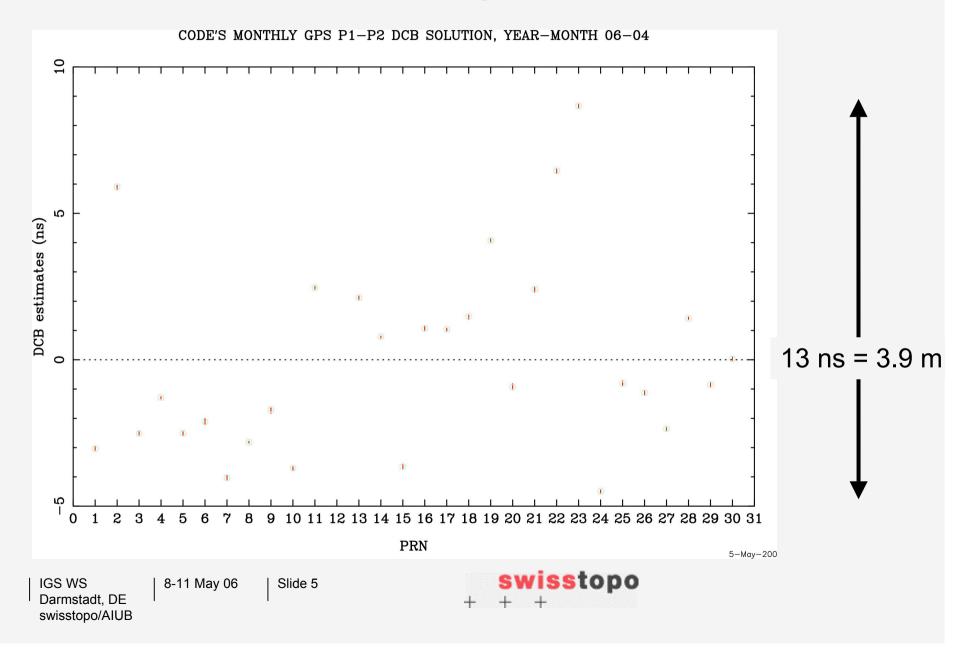
- The following code (pseudorange) observables are available from GPS: C/A (=C1), P1(Y1), P2(Y2).
- In the presence of *Anti-Spoofing (A/S)*, P-codes P1, P2 are encrypted for non-authorized users to Y1, Y2.
- We have to distinguish between three receiver classes (in terms of the code tracking technology):
 - P1/P2: C1, P1, P2
 - C1/X2: C1, X2=C1+(P2-P1)
 - C1/P2: C1, P2
- C1/X2 receiver models are identified as cross-correlation (CC) receivers. Prominent examples are Rogue and Trimble 4000 models.
- The operation of CC receivers depends on the A/S state. It is assumed here that A/S is always on (!).
- The latest generations of Leica, Novatel, Trimble receivers belong to the C1/P2 receiver class (see IGS Mail 3737).

swisstopo/AIUB

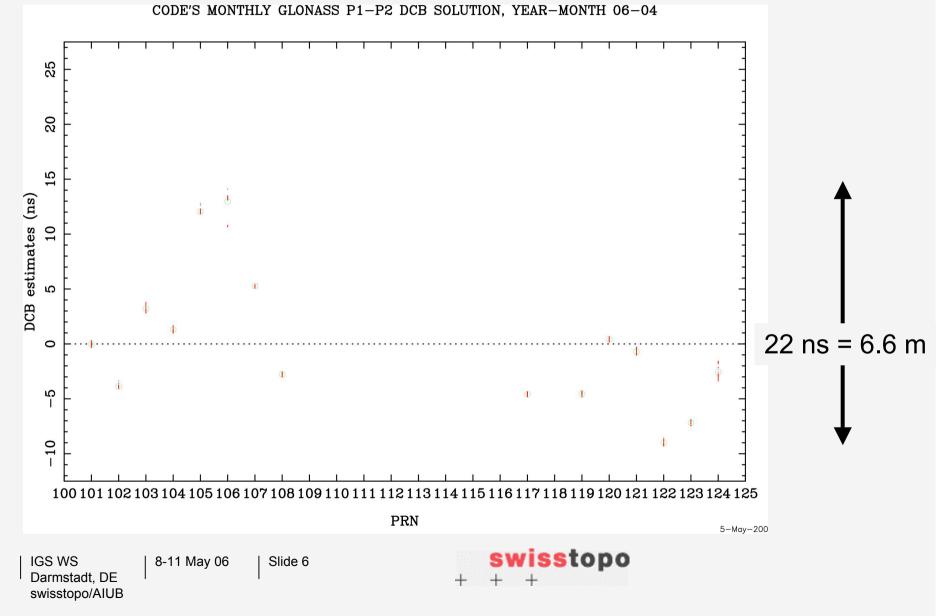
Introduction (2)


- Instrumental biases, B_{C1}, B_{P1}, B_{P2}, are present with respect to C1, P1, P2. These biases are not accessible (in the absolute sense).
- It is common to address the following differences of code biases:
 - P1-P2 and
 - P1-C1 differential code bias (=DCB).
- By convention, precise satellite clock corrections contain a specific linear combination of P1 and P2 satellite biases, specifically the ionosphere-free LC: 2.55·B_{P1}-1.55·B_{P2}(+B₀).
- It is obvious that code tracking data from both the C1/X2 and the C1/P2 receiver class must be corrected in order to achieve full consistency with P1/P2 data, or precise satellite clock information.
- The RINEX conversion utility cc2noncc is an easy-to-use tool to make given code measurements consistent with P1/P2 data by applying satellite-dependent P1-C1 bias corrections (e.g. produced by CODE, see IGS Mail 3212). The cc2noncc program is available at: https://goby.nrl.navy.mil/IGStime/cc2noncc/cc2noncc.f

IGS WS 8-11 I Darmstadt, DE swisstopo/AIUB


8-11 May 06 | Slide 3

swisstopo



GPS P1-P2 DCB Values, Computed at CODE

How to Use P1-P2 and P1-C1 Satellite DCB Information

The following table gives the corrections due to satellite-specific P1-P2 and P1-C1 DCB values for the most important linear combinations derived from various combinations of code observable types:

LC	P1/P2	C1/X2 = C1 + (P2 - P1)		C1/P2]
L1	$+1.55 \cdot B_{P1-P2}$	$+1.55 \cdot B_{P1-P2}$	$+B_{P1-C1}$	$+1.55 \cdot B_{P1-P2}$		$+B_{P1-C1}$	 Single-freq.
L2	$+2.55 \cdot B_{P1-P2}$	$+2.55 \cdot B_{P1-P2}$	$+B_{P1-C1}$	$+2.55 \cdot B_{P1-P2}$			
L3 (L_C)	0		$+B_{P1-C1}$	•		$5 \cdot B_{P1-C1}$	
L4 (L_I)	$-B_{P1-P2}$	$-B_{P1-P2}$		$-B_{P1-P2}$		$+B_{P1-C1}$	🗲 Iono.
L5 (L_W)	$-1.98 \cdot B_{P1-P2}$	$-1.98 \cdot B_{P1-P2}$	$+B_{P1-C1}$	$-1.98 \cdot B_{P1-P2}$	+4.53	$3 \cdot B_{P1-C1}$	
L6 (MW)	0		$-B_{P1-C1}$		-0.56	$5 \cdot B_{P1-C1}$	Amb. res.
$ u_2^2/(\nu_1^2-\nu_2^2) $) = 1.546	C1/C2					
$\nu_1^2/(\nu_1^2-\nu_2^2)$		$+1.55 \cdot B_{P1-P2}$		$+B_{P1-C1}$			

 $\nu_1 / (\nu_1 - \nu_2) = 2.540$ $\nu_1 \nu_2 / (\nu_1^2 - \nu_2^2) = 1.984$ $\nu_1 / (\nu_1 - \nu_2) = 4.529$ $\nu_1 / (\nu_1 + \nu_2) = 0.562$

IGS WS

Darmstadt. DE

swisstopo/AIUB

Determination methods:

- P1-P2: lono. / Abs. receiver cal.
- P1-C1: Diff. / <u>Clock</u> / <u>Amb. res.</u>

8-11 May 06 | Slide 7

 $\nu_2/(\nu_1 - \nu_2) = 3.529$ $\nu_2/(\nu_1 + \nu_2) = 0.438$

 $+2.55 \cdot B_{P1-P2}$

 $-B_{P1-P2}$

 $+2.55 \cdot B_{P1-C1}$

 $-1.98 \cdot B_{P1-P2} + 4.53 \cdot B_{P1-C1} - 3.53 \cdot B_{P2-C2}$

 $-0.56 \cdot B_{P1-C1}$

 $+B_{P1-C1}$

 $+B_{P2-C2}$

 $+B_{P2-C2}$

 $-1.55 \cdot B_{P2-C2}$

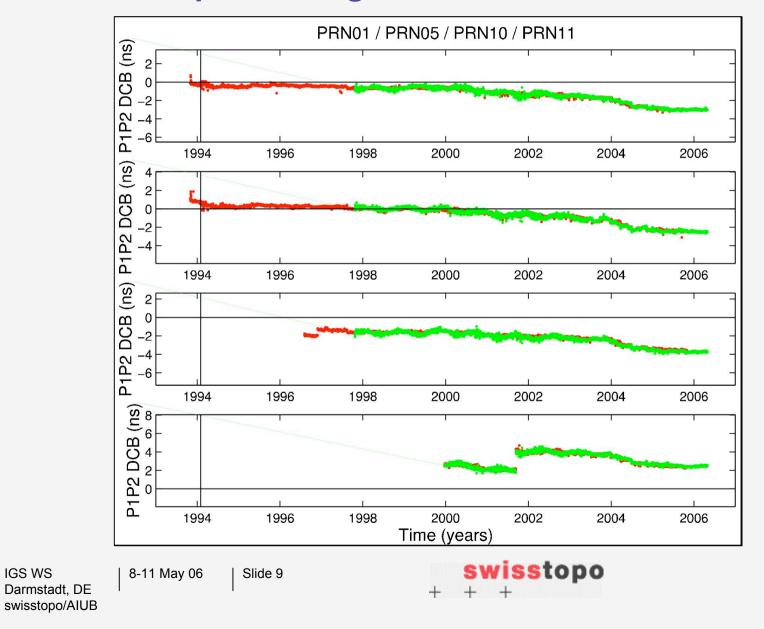
 $-0.44 \cdot B_{P2-C2}$

swisstopo

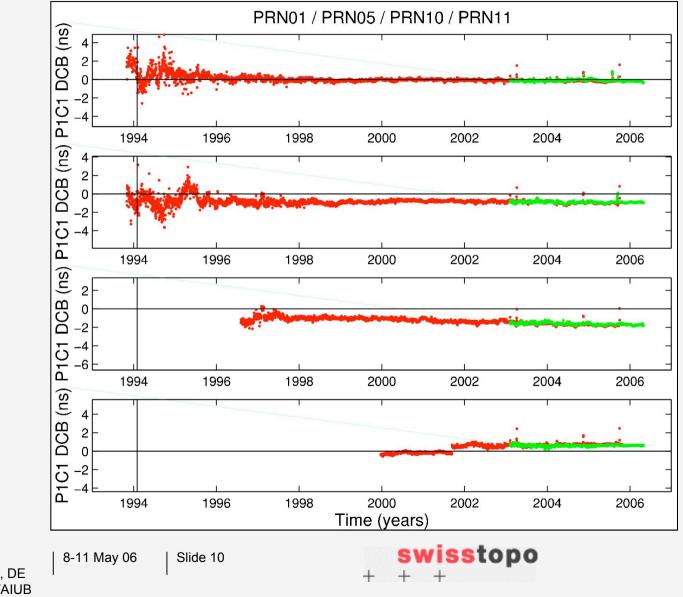
Verification of Receiver Tracking Technology (Using the Bernese Software Version 5.0)

Excerpt of a PPP BPE processing summary file (PPP03139.PRC):

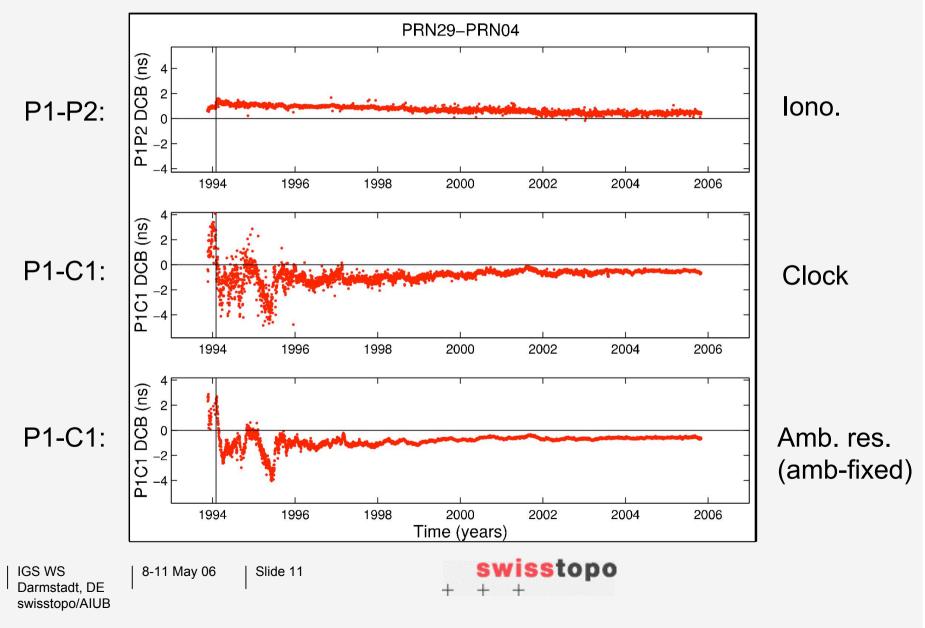
PART 6: VERIFICATION OF RECEIVER TRACKING TECHNOLOGY

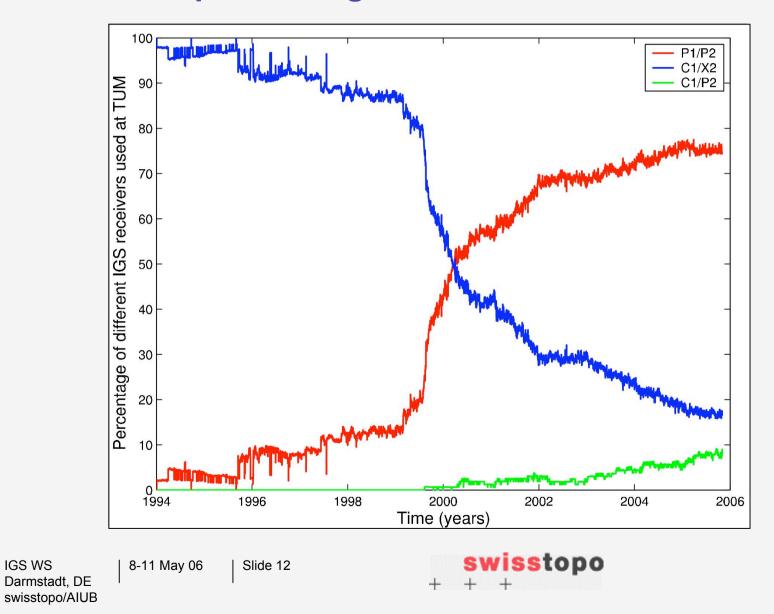


STATION NAME	MULTIPLIER RMS ERROR		SUGGESI	ED RECEIVER TY	PE GIVEN RECEIVER NAM	GIVEN RECEIVER NAME / TYPE	
BRUS 13101M004 -G	-0.224	0.043	P1/P2	5.242 28.666	ASHTECH Z-XII3T	P1/P2	OK
FFMJ 14279M001 -G	-0.105	0.051	P1/P2	2.045 21.578	JPS LEGACY	P1/P2	OK
MATE 12734M008 -G	0.874	0.048	C1/X2	2.637 18.312	TRIMBLE 4000SSI	C1/X2	OK
ONSA 10402M004 -G	-0.104	0.041	P1/P2	2.536 26.943	ASHTECH Z-XII3	P1/P2	OK
PTBB 14234M001 -G	-0.124	0.048	P1/P2	2.579 23.352	ASHTECH Z-XII3T	P1/P2	OK
VILL 13406M001 -G	-0.062	0.044	P1/P2	1.404 24.048	ASHTECH Z-XII3	P1/P2	OK
ZIMJ 14001M006 -G	0.057	0.048	P1/P2	1.195 19.598	JPS LEGACY	P1/P2	OK
ZIMM 14001M004 -G	1.131	0.047	C1/X2	2.788 24.083	TRIMBLE 4000SSI	C1/X2	OK


IGS WS Darmstadt, DE swisstopo/AIUB 8-11 May 06 | Slide 8

Time Series of Daily GPS <u>P1-P2</u> DCB Values From TUM/TUD Reprocessing


Time Series of Daily GPS <u>P1-C1</u> DCB Values From TUM/TUD Reprocessing


Darmstadt, DE swisstopo/AIUB

IGS WS

Time Series of Inter-Satellite Differences of P1-P2 and P1-C1 DCB Values From TUM/TUD Reprocessing

Number of P1/P2, C1/X2, C1/P2 IGS Receivers Used in TUM/TUD Reprocessing

Summary, Conclusions, Questions (1)

- The knowledge of P1-C1 biases is a must for successful ambiguity resolution (on long baselines) and for precise clock estimation when relying on a mixed receiver network.
- We introduced methods for retrieval of satellite (and receiver) DCB values, specifically with regard to P1-C1.
- We validated GPS P1-P2 and P1-C1 DCB results coming from the reprocessing effort made at TU Munich and TU Dresden.
- Reprocessing results show
 - commonly very stable satellite DCBs, specifically for P1-P2,
 - a considerably increased scattering of P1-C1 DCB estimates as long as the number of P1/P2 receivers is small (close to 1),
 - only few jump discontinuities (for the GPS constellation),
 - serious problems concerning A/S (see model assumption!).
- A/S is generally on as of January 31, 1994.

Summary, Conclusions, Questions (2)

- A/S-off state is obviously possible in some cases. The RINEX A/S bit should be considered. It would be convenient to have all (remaining) CC receivers generally operating in A/S-on tracking mode.
- Problems related to datum definition, detection of jump discontinuities, drifts, outliers, anomalies are very similar to those of other time series, such as GNSS station coordinates, antenna offsets/patterns, clocks, RPR model coefficients, etc.
- How should a DCB model look like? Monthly averages or a set of mean values?
- Combination on the basis of corresponding daily NEQ files (using ADDNEQ2) would be desirable.
- Maintenance of the list of C1/P2 receivers (in cc2noncc).
- Further issues: GPS L2C (C2), GLONASS, Galileo, etc.
- Reprocessing of data collected before January 31, 1994 is definitely for masochists …

