

# **Dual-Frequency GNSS Receivers** for Space Applications

O. Montenbruck. M. Garcia-Fernandez





# **Dual-Frequency GNSS Receivers** for Space Applications

- → Space a different world!?
- → SGPS receiver overview
- → Performance comparison
- → Galileo the next step
- → Conclusions





#### SGPS – What's Special?

#### → Signal Dynamics

- High Doppler shift and line-of-sight acceleration
- → Rapid constellation change
- ✓ Pronounced code-carrier divergence

#### → Legal Issues

- International Traffic in Arms Regulations (ITAR)
- → European and national export laws



exit();

};





## **Space – A Different World?**

- → Temperature
  - ✓ E.g. –20°C ... +60°C inside a representative satellite
  - → Compatible with consumer electronics
- → Vacuum
  - → Outgassing, leakage
- → Vibration
  - Only a few minutes at launch (unlike a car on a bumby road)
  - → But: risk of resonances
- → Radiation
  - Total Ionization Dose (aging, current increase, death)
  - Single Event Effects (bit errors, hick-up, desctructive latch-up)









## **Testing of Space Hardware**



Signal Simulator



Shaker



Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft



Thermal Vacuum Chamber





Co-60 Source



Proton Cyclotron



### **Spaceborne Dual-Frequency GPS Receivers**

| Receiver                          | Chan          | Ant   | Data                  | Nav.<br>Acc.    | Power<br>Mass    | TID         | Temp.<br>Range   | ROM<br>Cost | Missions                                  |
|-----------------------------------|---------------|-------|-----------------------|-----------------|------------------|-------------|------------------|-------------|-------------------------------------------|
| <b>Monarch</b><br>(General Dyn)   | 6-24          | 1-4   | C1,P1,P2<br>LA,L2     | 3 m SPP         | 25 W<br>4 kg     | 100<br>krad | -34°C /<br>+71°C |             |                                           |
| <b>BlackJack</b><br>(JPL)         | 16 x 3        | 4     | C1,P1,P2<br>LA,L1,L2  | 17 m<br>SPP     | 10 W<br>3.2 kg   | 20<br>krad? | -10°C /<br>+55°C |             | SAC-C, CHAMP<br>GRACE, Jason-1            |
| <b>IGOR</b><br>(BRE)              | 16 x 3        |       |                       |                 | 16 W<br>4.6 kg   | >12<br>krad | -10°C /<br>+55°C | 500 k€      | TanDEM-X (2006)<br>COSMIC (2006)          |
| GRAS/GPSOS<br>(Saab)              | n/a           | 3 (?) |                       | <100 m          | 50 W<br>10-30 kg |             |                  | 2 M€        | METOP (2006)                              |
| <b>Lagrange</b><br>(Laben)        | 16 x 3<br>(?) | 1 (?) | C1,P1,P2<br>LA,L2     | 20mSPP<br>8m KF | 30 W<br>5.2 kg   | 20 krad     | -25°C /<br>+60°C | 700 k€      | ENEIDE, Radarsat-2<br>(2006), GOCE (2007) |
| <b>DFSG</b><br>(NEC/Toshiba)      | 6 x 2         | 1     |                       |                 | 30 W<br>4.1 kg   | 20 krad     | -15°C /<br>+55°C | 1 M€        |                                           |
| <b>TopStar</b><br>3000G2(Alcatel) | 6 x 2         | 1 (?) | C1,L2C<br>LA,L2       |                 |                  |             |                  |             | Under development                         |
| Innov. GNSS<br>Nav. Rcv. (AAE)    | Up to<br>36   | 2     | C1,P1,P2<br>L2C,LA,L2 | <5m             |                  | >20<br>krad | -25°C /<br>+60°C |             | Under development                         |
| OEM4-G2L<br>(NovAtel)             | 12 x 2        | 1     | C1,P2<br>LA,L2        | 14 m<br>SPP     | 1.5 W<br>50 g    | 6 krad      | -35°C /<br>+50°C | 10 k€       | CanX-2 (2006)<br>CASSIOPE (2007)          |
| PolaRx2<br>(Septentrio)           | 16 x 3        | 1 (4) | C1,P1,P2L<br>A,L2     | 1m              | 5 W<br>120 g     | 9 krad      | -30°C /<br>+70°C | 10 k€       | TET108 (2008)                             |

**Disclaimer**: Despite adequate care in compiling this table neither the authors nor DLR assume any responsibility for the validity and comparability of individual data. Rough-order-of-magnitude cost figures are given for orientation only and have not officially been endorsed by the respective manufacturers.



Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft



## **Spaceborne Dual-Frequency GPS Receivers**



|                      | IGOR<br>(Broadreach/JPL)           | Lagrange<br>(Laben)                     | PolarRx2<br>(Septentrio)       |
|----------------------|------------------------------------|-----------------------------------------|--------------------------------|
| Туре                 | 16 x 3 channels L1/L2              | 16 x 3 channels L1/L2                   | 16 x 3 channels L1/L2          |
| Raw data<br>accuracy | C/A, P(Y) 0.1 m<br>LA,L1,L2 0.5 mm | C/A, P(Y)  0.2 / 0.1 m<br>LA, L2   2 mm | C/A, P(Y) 0.1 m<br>LA, L2 1 mm |
| Nav                  | 15 m                               | 20 m                                    | 1 m                            |
| TTFF                 | 3-16 min                           | ???                                     | 1-3 min                        |
| Power, Mass          | 16 W, 5kg                          | 30 W, 5 kg                              | 5 W, 120 g                     |
| Radiation tolerance  | 12 krad<br>SEE hard                | 20 krad<br>SEE hard                     | 9 krad<br>???                  |
| Cost (ROM)           | 500 k€                             | 700 k€                                  | (10 k€)                        |



Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft



PolaRx2

#### **Code Noise**

IGOR



Source: DOI 10.1007/s10291-006-0025-9

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 8 IGS Workshop 2006, Darmstadt > 2006/05/11



PolaRx2

#### **Phase Noise**

IGOR



Source: DOI 10.1007/s10291-006-0025-9

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft



### **Semi-Codeless Tracking Losses**

IGOR

PolaRx2



Source: DOI 10.1007/s10291-006-0025-9

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft



#### **Differential Code Biases**

| Receiver | Unit | P1-C1  | P2-C1  | P2-P1  |
|----------|------|--------|--------|--------|
| IGOR     | а    | +0.3 m | +4.7 m | +4.4 m |
| PolaRx2  | а    | -0.3 m | 0.0 m  | +0.3 m |
|          | b    | -0.5 m | +0.1 m | +0.6 m |
|          | С    | -0.4 m | +0.1 m | +0.5 m |

DCBs determined from pseudorange differences in signal simulator test without ionospheric path delays

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Source: DOI 10.1007/s10291-006-0025-9



## **Carrier Phase Timing Offsets**

| Receiver | LA/L1         | L2            |
|----------|---------------|---------------|
| IGOR     | -0.45±0.05 μs | -0.45±0.05 μs |
| OEM4-G2  | -1.00±0.10 μs | -3.10±0.10 μs |
| PolaRx2  | -0.60±0.05 μs | -0.60±0.05 μs |

- Carrier phase time offset relative to the code based clock solution. The specified values need to be added to the time stamp given by the receiver to obtain the true measurement epoch.
- $\rightarrow$  1µs time offset maps into 7 mm along-track error
- ✓ Internal offsets of signal simulator may be suspected, but inter-receiver bias remains.

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Source: DOI 10.1007/s10291-006-0025-9



## **Galileo - The Next Step**

#### → Prospects

- → More satellites (joint GPS-Galileo receiver, e.g. L1/E5a or L1/L2/E5)
- → Link to GPS and Galileo time
- → Reduced code/phase noise through direct signal tracking
- Better code multipath supression (ISS environment!)
- Correction of 2nd order ionopsheric effects (3 frequencies)
- ➤ No spacequalified Galileo receivers available yet
  - → Signal specification pending
  - → AGGA-3 and frontend development substantially delayed
- → Terrestrial receivers "in the pipeline"
  - → Septentrio (GeNeRx1)
  - → NovAtel (L1/E5a card)
  - → Javad/Topcon (GeNiuSS / Paradigm G3)







## Conclusions

- → Commercial-off-the-shelf (COTS) receivers
  - $\rightarrow$  can cope with high signal dynamics of LEO spacecraft
  - ✓ can provide adequate tracking, navigation and timing accuracy in LEO
  - → provides access to latest receiver technology
  - require dedicated qualification testing
  - → are potentially sensitive to single-event effects (SEE)
- → ACES specific considerations
  - → benign environmental conditions *inside* the ISS (benefits COTS use)
  - → potenial cost savings; but dependent on requirements specification!
  - → use of Galileo signal highly desirable (noise, multipath); feasibility??
  - → ensure extensive and transparent pre-flight testing with signal-simulator
- → Multipath
  - → assess ISS multipath environment (ray tracing, Monte Carlo simulation)
  - → assess need for choke rings





## **Further Reading**

- Langley R. B., Montenbruck O., Markgraf M., Kang C.S., Kim D.; Qualification of a commercial dual-frequency GPS receiver for the e-POP platform onboard the Canadian CASSIOPE spacecraft; 2nd ESA Workshop on Satellite Navigation User Equipment Technologies, NAVITEC'2004, 8-10 Dec. 2004, Noordwijk, The Netherlands (2004).
- Garcia-Fernandez M., Montenbruck O., Markgraf M., Leyssens J.; Affordable Dual-Frequency GPS in Space; 16th International ESA Conference on Guidance, Navigation and Control; 17-21 Oct. 2005, Loutraki, Greece (2005).
- Montenbruck O., Garcia-Fernandez M., Williams J.; Performance Comparison of Semi-Codeless GPS Receivers for LEO Satellites; GPS Solutions (2006). DOI 10.1007/s10291-006-0025-9

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft