Generation of igs05.atx – status quo

Ralf Schmid

Institut für Astronomische und Physikalische Geodäsie, TU München

GeoForschungsZentrum Potsdam

Andreas Gäde

Astronomisches Institut, Universität Bern

IGS Workshop 2006, May 8-11, Darmstadt

Contents

Satellite antennas

- Block IIR-A/B
- CODE results
- GLONASS
- Receiver antennas
 - igs05.atx statistics
 - Converted NGS calibrations
 - IGS network statistics
 - Radome problem
- Conclusions

GPS satellite antenna types

Block I antenna (Czopek et al., 1993)

Photo: Rockwell International

4 different satellite antenna types:

- Block I
- Block II, Block IIA
- Block IIR-A
- Block IIR-B, Block IIR-M

Block IIR-A/B

Photo: www.lockheedmartin.com

SVN	Legacy Antenna Panel	Improved Antenna Panel	IIR-M SV
41	X		
43	X		
44	X		
45	X		
46	X		
47		X	
48		X	X
49		x	X
50		X	X
51	X		
52		X	X
53		X	X
54	X		
55		X	X
56	X		
57		X	X
58		X	X
59		x	
60		X	
61		X	

Marquis & Reigh (2005)

Mean PCVs from GFZ and TUM

iapg TM

GFZ

Potsdam

 $u^{\scriptscriptstyle \flat}$

Consistency check by CODE

iapg ∏∏

GFZ

 $u^{\scriptscriptstyle \flat}$

GLONASS PCVs from CODE

 \mathbf{GFZ} u^{b}

IGS Workshop 2006, May 8-11, Darmstadt

Large nadir angles

 $u^{\scriptscriptstyle b}$

GFZ

POTSDAM

GLONASS *z*-offsets from CODE

$$\frac{\mathbf{GFZ}}{\mathbf{POTSDAM}} u^{\mathsf{b}}$$

IGS Workshop 2006, May 8-11, Darmstadt

Latest model igs05_1365.atx

59 satellite antennas:

- 44 GPS
- 15 GLONASS (latest GLONASS-M missing: R714)

154 receiver antennas:

- 42 robot calibrations from Geo++ (az.+el.)
 - 32 without radome
 - 10 with radome
- 112 converted **field** calibrations from NGS (el. only)
 - 74 without radome
 - 38 with radome

Latest model igs05_1365.atx

59 satellite antennas:

- 44 GPS
- 15 GLONASS (latest GLONASS-M missing: R714) ullet

154 receiver antennas:

- 42 **robot** calibrations from Geo++ (az.+el.) •
 - 32 without radome
- 74 without solution! from NGS (el. only)
 38 w Temporary solution 112 converted field converted

iapg

Conversion of relative field calibrations

By adding the difference between the absolute and the relative values for the reference antenna AOAD/M_T.

Photo: National Geodetic Survey

iapg

Phase center offsets:

 $PCO_{abs} = PCO_{rel} + (PCO_{abs}(AOAD/M_T) - PCO_{rel}(AOAD/M_T))$

Phase center variations:

 $PCV_{abs} = PCV_{rel} + PCV_{abs}(AOAD/M_T)$

NGS calibrations – limited elevation range

GFZ U^b

IGS Workshop 2006, May 8-11, Darmstadt

NGS calibrations – missing azimuth-dependence

TRM14532.00

NONE

IGS Workshop 2006, May 8-11, Darmstadt

NGS calibrations – missing azimuth-dependence

IGS Workshop 2006, May 8-11, Darmstadt

iapg ∏∏

Antennas in the IGS network

Data source: ftp://igscb.jpl.nasa.gov/igscb/station/general/loghist.txt

37 different antenna types (cf. igs05.atx: 106):

- $22 \rightarrow$ robot calibration (60%)
- $15 \rightarrow$ converted field calibration

81 antenna + radome combinations:

- $10 \rightarrow$ robot calibration
- $15 \rightarrow$ converted field calibration
- 42 → no calibration available
 14 → not calibratable (DOME)

When can field calibrations be replaced by robot calibrations? When can new radome calibrations be added?

70%

iapg

Radome problem – station FORT

8 April 2006: IGS station FORT decommissioned 6 weeks before: radome (DOME) removed

Photos: www.roen.inpe.br

Ray et al. (2006): The effect of the radome has been an apparent height bias of about 16 mm downward.

How to deal with stations with uncalibrated radomes?

Radome effect – radome SPKE

IGS Workshop 2006, May 8-11, Darmstadt

Radome effect – radome SCIS

$$\frac{\mathbf{GFZ}}{\mathbf{POTSDAM}} u^{\mathsf{b}}$$

IGS Workshop 2006, May 8-11, Darmstadt

Radome effect – radome SNOW

IGS Workshop 2006, May 8-11, Darmstadt

iapg ∏∭

Propagation to other antennas

Pros:

- Better than ignoring the radome effect
- Smaller effort than needed for additional calibrations
- Surprisingly good agreement for some radomes/frequencies

Cons:

- How to deal with discrepancies?
- Multiple calibrations only for very few radomes
- Azimuth-dependent (NONE) + elevation-dep. (radome) ?
- Generation of a "three-class society" in igs05_wwww.atx:
 - 1. robot calibrations
 - 2. converted field calibrations
 - 3. converted field calibrations + propagated radome effect

iap

Benefit from radome calibrations

IGS Workshop 2006, May 8-11, Darmstadt

Benefit from radome calibrations

IGS Workshop 2006, May 8-11, Darmstadt

Benefit from radome calibrations

IGS Workshop 2006, May 8-11, Darmstadt

iapg

Conclusions

- Fully consistent antenna phase center model for all GPS and GLONASS satellites available (nadir-dependent only)
- Converted field calibrations should eventually be replaced by azimuthal PCVs down to 0° (How? When?)
- Big need for calibrations of **antenna + radome** combinations
- **Propagation** of the radome effect from one antenna to another is possible, but not trouble-free and of questionable accuracy
- Radome calibrations avoid height biases of several cm
- Transition to absolute PCVs is planned in parallel with the switch to ITRF2005 in the coming months

Thanks for your attention!

0

Photo: Enrique Cabral, UNAM