
ESOC Navigation Support Office
H. Boomkamp

IGS Workshop 2006 ESOC

INTRODUCTION

Over the past decades, few areas of science and
engineering have known more rapid progress than
information technology. Nonetheless, the many
improvements in software engineering seem to be
largely ignored by the other scientific disciplines.
This is especially remarkable in cases where
productivity depends directly on the capacity and
adaptability of large software systems, as is the
case for the IGS Analysis Centres.

By the time of the 2006 IGS Workshop, routine IGS
processing is still largely based on FORTRAN 77
technology, which was already quite obsolete when
IGS started operations: by the early 1990’s, the IT
industry was generally abandoning the idea of
developing large software systems in FORTRAN,
ALGOL or COBOL, in favour of more compact and
flexible third generation languages, exploiting
concepts like Object Oriented Programming and
Pervasive Information Management.

Such innovations in Information Technology are
usually driven by economic arguments, like
reduced development trajectories or improved
reusability of existing source code. These
arguments are equally valid for the IGS Analysis
Centres, which typically have limited budgets for
software developments. However, there are two
further reasons why software modernization is of
critical importance to IGS.

The first reason is the strong increase in
processing capacity that is needed to cope with
multiple GNSS constellations (GPS, GLONASS,
Galileo), larger station networks, the arrival of Low
Earth Orbiters (higher data rates for the entire
solution), and the drive towards shorter IGS
product latencies. Modern methods are available
for optimizing software systems in terms of memory
and CPU, but it is typically impossible to apply such
methods on complex conglomerates of existing
FORTRAN code.

The second reason is that due to continuous
changes and increasingly complex software, the
maintenance process of a large FORTRAN system
becomes saturated: the development trajectories
become too long to cope with the quickly changing
requirements, so that the system that is actually
available for operational use lags more and more
behind with the state of art in knowledge.

At ESOC IGS Analysis Centre, the FORTRAN
system that is used operationally shows the signs
of both sub-optimal performance and saturated
maintenance. For this reason, a new C++ system
“ROBOD” has been developed around various
optimization methods that maximize processing
capacity within available hardware, while strongly
reducing overall code size and code complexity.

This poster reports on the status of the ROBOD
development and compares its performance
against the operational ESOC IGS software.

input
external file formats
(RINEX, DE405, ...) optimal internal storage

output
external file formats
(SINEX, SP3, ...)optimal internal storageoptimized algorithms

Software modernization in support of LEO and Multi-Constellation Processing
The Relational Object Base for Orbit Determination
consists of interacting sets of dynamically allocated
C++ objects. The data properties of these objects
are equivalent to data fields of records in a
relational database, and sets of similar objects
(satellites, stations, observations, …) correspond to
record tables in a relational database. Some data
properties may be pointers to objects in other sets,
corresponding to index numbers to records in other
tables of a database.

This exact mapping between a network of C++
objects and a relational database allows all internal
data to be managed by generic database principles.
The most important of these is Uniqueness of
Information: no data is ever repeated in more than
one record. Instead, different records may use
relations (pointers) to a same data record (object) in
another table, which holds the unique information of
interest. The design of all class hierarchies is driven
by the principle of uniqueness.

In a GPS parameter estimation process, the use of
CPU is dominated by the construction and inversion
of the normal equations, for which the ROBOD
system uses the ATLAS [1] libraries in combination
with the Pardiso [2] solver, allowing efficient
parallelization over various CPUs. All lower level
data processing steps, like the computation of
observation residuals or the integration of satellite
orbits are handled in a distributed way by the
individual objects.

ROBOD design drivers
• minimized use of memory
• minimized use of CPU
• minimum complexity for user
• minimum code complexity

Summary of test case that was executed by both systems
• Network of 60 IGS stations
• Constellation with 29 GPS satellites
• 12 hour solution arc
• 5 minute data samples of undifferenced iono-free GPS data
Estimated parameters
• Initial position and velocity of satellites
• 6 SRP parameters per satellite
• Epoch-dependent clocks
• Station positions
• ambiguity bias per pass

The Figures on the right visualize the
substantial reduction in code size and
code complexity that can be achieved by
using state of art information technology

501 10 20 30 40 60 70 80 90 100 > 100

McCabe cyclometric complexity per code blockESOC IGS-AC operational F77 system BAHN

ESOC IGS-AC prototype C++ system ROBODSt
at

em
en

t l
in

es
 o

f c
od

e
pe

r c
od

e
bl

oc
k

Blocks Statement lines of code McCabe complexity
used total average min max average min max

BAHN 403 54374 136 11 2436 14.5 1 315
ROBOD 621 12184 19 1 149 4.5 1 52

Summary statistics for code blocks used in test

Visualization of BAHN and ROBOD runs

SLOC - Statement lines of code
Source code metric that indicates
the size of a subroutine or function.

SLOC - Statement lines of code
Source code metric that indicates
the size of a subroutine or function.

McCabe Cyclometric Complexity
Source code metric that defines the
number of independent paths through
a code block, defining testability and
maintainability of the source code

McCabe Cyclometric Complexity
Source code metric that defines the
number of independent paths through
a code block, defining testability and
maintainability of the source code

0

640

0

640 Mb

12:426:58

86 Mb

BAHN

ROBOD
time (minutes)

m
em

or
y

us
e

The Figures demonstrate the typical
advantages of software modernization:
• Code size reduced by factor > 4
• Code complexity reduced by factor > 3
• Hardware efficiency improved by > 7

The immediate benefits are:
• Shorter development trajectories
• Shorter familiarization periods
• Cheaper development and maintenance
• Easier / faster adaptation to new tasks
• Lower bug probability
• Easier configuration control
• Less documentation to maintain
• etc., etc. !

Use of hardware by the two processes

Each column in the plots represents

a single code block (subroutine or

function) accessed during the tests

Current ROBOD orbit precision: differences (cm) with IGS final for test arc

0

25

50
Summary and conclusions

The ROBOD system demonstrates what the world
of Information Technology has known for several
decades, namely that large applications like GPS
parameter estimation software can be developed in
far simpler and more efficient ways than via
traditional, large FORTRAN systems. The latter
tend to suffer from extreme code complexity, poor
internal data organization, limited flexibility towards
change and steady degradation of code structures.
The fatal consequence for an IGS Analysis Centre
is a complete saturation of the available software
maintenance trajectories, and therefore an ever
increasing gap between desired capabilities and
capabilities that are actually operationally available.

The total workload spent so far on the ROBOD
development accumulates to about 15 months of
fulltime work for one person, which is only a very
modest fraction of the accumulated effort that has
been invested in the ESOC FORTRAN systems

over the years. The most relevant “innovations“
that the ROBOD software exploits are Object
Oriented Programming in C++, and Uniqueness of
Information, as known from relational databases.
Both these concepts have in fact been available for
at least two decades, which implies that a system
like ROBOD could have been developed long
before IGS started its operations.

The main benefits of these design features are

• maximized processing capacity within the
limits of the available hardware

• far shorter development trajectories for

future modifications (eliminating any form
of maintenance saturation)

• much shorter familiarization trajectories

both for users and developers of the
system.

Such advantages will greatly improve the
productivity of the ESOC IGS Analysis Centre, and
will be of particular interest to demanding future
applications like reprocessing of historic data, multi-
constellation solutions, and high-rate solutions
involving GNSS and LEO satellites.

Completion of the system will require the equivalent
of several further months of work, which will
however be spread out over a longer period due to
other obligations. Nonetheless, the current state of
the system is mature enough to demonstrate the
substantial benefits of software modernization, and
to suggest that other IGS Analysis Centres may
benefit equally from a radical upgrade of their
processing systems. In general, the effort of doing
so seems to be grossly over-estimated, while the
long-term benefits of software modernization are
either overlooked, or seriously undervalued.

... measure your own software!

All code metrics for the tests presented on
this poster have been generated with

CCCC for C++,
available at http://cccc.sourceforge.net

and
Understand for FORTRAN

available at http://www.scitools.com/uf.html

[1] math-atlas.sourceforge.net
[2] www.computational.unibas.ch/cs/scicomp/software

