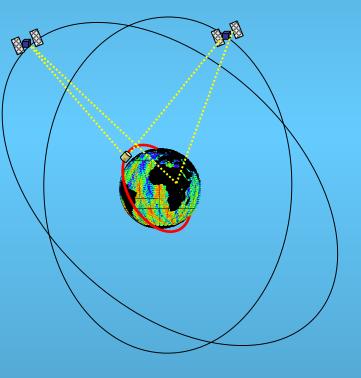
High-performance algorithms for double difference data processing Henno Boomkamp, John Dow ESOC / TOS-GN

Double difference properties

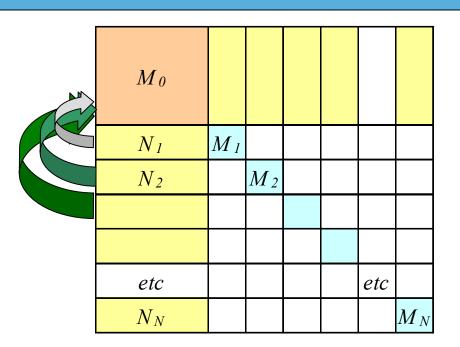
- Traditionally, "redundant" DD combinations are avoided:
 - Linear dependence of normal matrix information
 - Imbalances in station weighting
 - Redundant workload
- In fully correlated estimation of orbits, clocks and ambiguities "redundant" DD combinations are *not* redundant
 - DD residuals are all independent
 - Orbit, ambiguity information is amplified, clocks are not



Normal matrix partitioning (1)

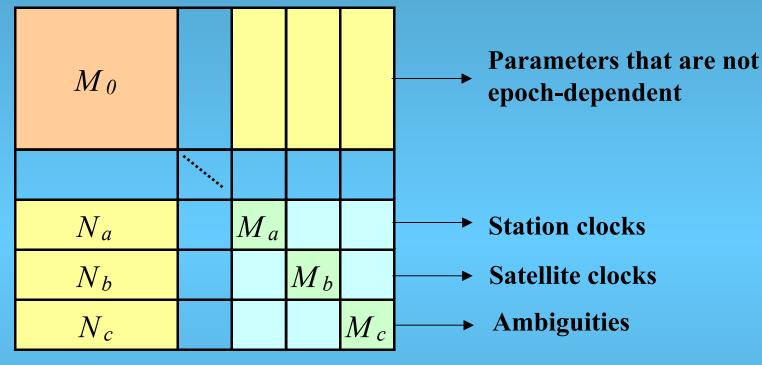
- Normal equation looks like $M \vec{x} = \vec{y} \implies \vec{x} = M^{-1} \vec{y}$
- Epoch-dependent parameters:
 - Station and satellite clocks (fixing one per epoch)
 - Phase ambiguities

 (constrained to value from previous epoch)
- Main partition M_0 is for all other parameters (... may have further partitions)



- 1. Matrix partition for orbit parameters
- 2. Matrix partitions for epoch parameters
- **3.** Partitions that correlate 1. and 2.

Normal matrix partitioning (2)



- Separate partitions M, N exist for every epoch
- M_a, M_b, M_c are diagonal matrices
- No correlations between epochs other than ambiguity constraints

Normal matrix partitioning (3)

$$M\vec{x} = \vec{y} \implies \vec{x} = M^{-1}\vec{y}$$

M, x and y are partitioned for epoch parameters

$$\begin{cases} M_{0}\vec{x}_{0} + N_{1}^{t}\vec{x}_{1} + \dots + N_{n}^{t}\vec{x}_{n} = \vec{y}_{0} \\ N_{1}\vec{x}_{0} + M_{1}\vec{x}_{1} & = \vec{y}_{1} \\ \vdots & \vdots \\ N_{N}\vec{x}_{0} + M_{n}\vec{x}_{n} & = \vec{y}_{n} \end{cases}$$

 M_0 Image: M_1 minimum
 Image: M_2 minimum
 Image: M_1 minimum

 N_1 M_1 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum

 N_2 M_2 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum

 N_2 M_2 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum

 M_2 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum

 M_2 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum

 M_2 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum

 M_2 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum

 M_2 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum
 Image: M_2 minimum

 M_2 Image: M_2 minimum
 Image: M_2 minim
 Image: M

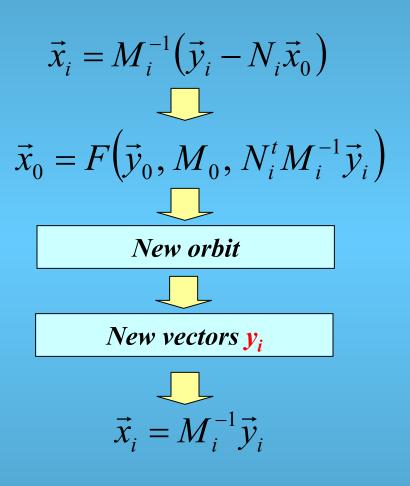
Each \mathbf{x}_i can be expressed in \mathbf{x}_0 : $\vec{x}_i = M_i^{-1} (\vec{y}_i - N_i \vec{x}_0)$

$$\Rightarrow \left(M_0 - \sum_{i=1}^n N_i^t M_i^{-1} N_i\right) \vec{x}_0 = \vec{y}_0 - \sum_{i=1}^n N_i^t M_i^{-1} \vec{y}_i$$

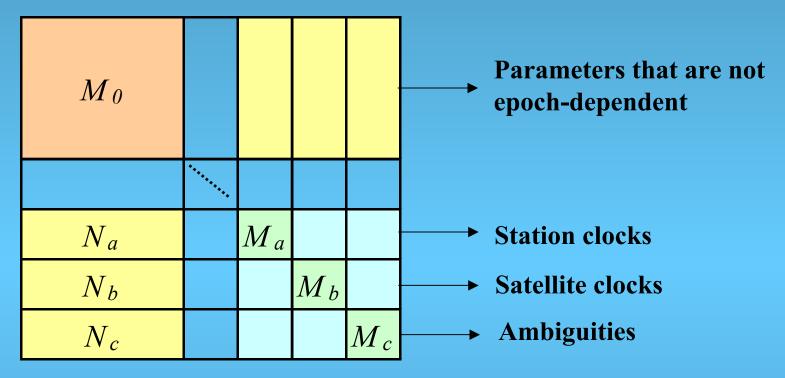
From this system <u>only</u> the vector \mathbf{x}_0 is solved explicitly – not the many \mathbf{x}_i

Normal matrix partitioning (4)

- Once that vector x_0 is available, the *a posteriori* orbit can be propagated
- New y_i are computed at every epoch, and no longer contain errors due to the *a priori* x_0
- Epoch vectors x_i can now be solved from the local system
- Partitions *N_i* are only needed once, and do not have to be stored or recomputed
- Number of epochs can now be very large: high-rate data



Double difference information (1)



- Undifferenced information enters in all matrix partitions
- Code DD information enters in M_0 only
- Phase DD information enters in M_0 , N_c , M_c

Double difference information (2)

• "Redundant" combinations are DD observations that share one or more undifferenced observations:

E = (A - B) - (C - D)F = (A - B) - (C - G)

H = (D - B) - (I - G) etc.

- Each DD observation affects a different combination of matrix rows in the fully correlated partitioning
- "Redundant" combinations are *not* redundant, but help to separate orbits, clocks and ambiguities by amplifying different parts of the normal matrix system in different ways

Handling of DD observations (1) DD observation equation: E = (A - B) - (C - D)

$$\boldsymbol{R}_{E} = (\boldsymbol{R}_{A} - \boldsymbol{R}_{B}) - (\boldsymbol{R}_{C} - \boldsymbol{R}_{D})$$

Normal matrix contribution:

 $E^{t}E = E^{t}R_{E}$ = $A^{t}A - 2A^{t}B - 2A^{t}C + 2A^{t}D + B^{t}B - 2B^{t}C$ - $2B^{t}D + C^{t}C + 2C^{t}D + D^{t}D$

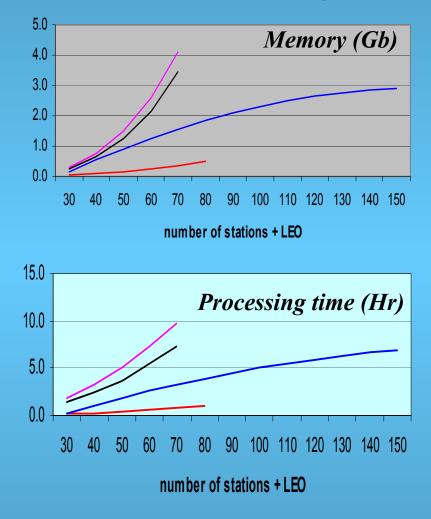
- The ten right-hand side terms occur in many DD combinations
- Contributions to M_0 are always the same even for phase & code!
- Contributions N_c , M_c (ambiguities) are different for all DD
- Instead of producing the costly products *A^tA*, *A^tB*, etc. many times, it is sufficient to count how often they are needed in *M*₀
- Products are generated just once, and multiplied with their count

Handling of DD observations (2)

- For any four undifferenced observations:
 - There are four contributions A^tA , B^tB , B^tB , B^tB
 - There are *at most* six mixed terms A^tB , A^tC , etc
- Counting of DD combinations represents a negligible workload compared to the actual matrix accumulation
- Workload for handling *all possible* double differences can never exceed 10 / 4 times the workload for handling the undifferenced observations. In practice, spherical Earth prevents ~60% of the combinations.
- Workload for processing DD data never exceeds about twice the workload for undifferenced processing, regardless of the amount of DD combinations that are included!

Workload for DD handling

- The number of geometrically possible DD combinations is a quadratic function of the number of undifferenced observations (... stations)
- The workload for DD handling is linear in the number of *un*differenced observations (~factor 2)
- The workload for DD handling is only a square root function of the actual amount of DD combinations!



Example of DD performance

Typical POD run of ESOC IGS Analysis Centre					
	ROBOD prototype				
		IGS-like process		Large scale process	
Test platform: SUN fire V480 server	without DD	without DD	with DD	without DD	with DD
GNSS satellites	28	28	28	38	38
LEO satellites	0	0	0	2	2
IGS ground stations	52	59	59	150	150
arc length (hrs)	48	24	24	24	24
epoch interval (s)	300	150	150	15	15
nr of epochs	576	576	576	5,760	5,760
clocks + phase ambiguity parameters	40,602	54,720	138,832	91,332	485, 228
other estimated parameters	524	1,119	1,119	2,534	2,534
total parameters	41,126	55,839	139,951	93,866	487,762
undifferenced observations	441,728	563,658	563, 658	7,877,928	7,877,928
double difference observations	0	0	11,409,520	0	213, 573, 080
total observations	441,728	563,658	11,973,178	7,877,928	221,451,008
Ratio observations / parameters	11	10	86	84	454
Memory (Mb)	583	141	249	824	2,488
Processing time (hrs:min:sec)	03:40:27	00:05:21	01:04:03	01:27:47	14:24:30

10 years IGS Workshop Berne, 1-5 March 2004

12

Conclusions

- In fully correlated estimation of orbits, clocks and ambiguities, "redundant" DD combinations still contain useful information
- Efficient handling of epoch-dependent matrix partitions allows for high-rate data (... LEO)
- Efficient handling of large amounts of DD observations is possible if properties of linear combinations are exploited
- Workload for DD processing is less than proportional to the actual number of DD observations
- Number of considered DD combinations is virtually unlimited, all geometrically possible DD are included
- Prototype implementation illustrates high performance, precision improvements are still needed

