Risk Mitigation in the Ground Mission Segment using the Galileo System Test Bed

10 Years IGS – 4 March 2004, Bern Marco.Falcone@esa.int Manfred.Lugert@esa.int

Service Performance

GALILEO Global Services	Open Service	Commercial Services	Safety of Life Services
Coverage	Global	Global	Global
Positioning	15 m H - 35 m V		4 m H - 8 m V
Accuracy	(single frequency)		(dual frequency)
	4 m H - 8 m V		
	(dual frequency)		
Timing Accuracy	30 nsec		30 nsec
Availability	99.5%	99.5%	99.5%
Integrity	None	None	Required
Alert Limit			<u>12 m H - 20 m V</u>
Time to Alert			6 seconds
Integrity Risk			3.5 x 10 ⁻⁷ / 150
			seconds
Continuity Risk			1.0 x 10 ⁻⁵ / 15
			seconds
Access Control	Free Open	Controlled	Controlled Access
	Access	Access of	of Nav Data
		Ranging Code	Message
		and Nav Data	
		Message	
Certification and	None	Guarantee of	Build for
Service		Service Possible	Certification and
Guarantees			Guarantee of
			Service

G/S Main Components

- The Galileo Ground Segment comprises the Ground Control Segment (GCS) and the Ground Mission Segment (GMS) and includes:
- Global network of Galileo Sensor Stations (GSS)
- Global network of Up-link Stations (ULS) for real-time mission data up-link in C-Band
- Global network of Telemetry, Telecommand and Ranging Stations (TT&C) for control of the satellites in S-Band
- Interconnecting high performance communication network and
- 2 geographically redundant Galileo Control Centres (GCC) for all the centralised processing, monitoring & control.

Risk Mitigation

Ground Mission Segment Risks Analysis

- Consolidation of Navigation performance and associated processing algorithms
- Consolidation of Integrity performance regarding the establishment of SISA and SISMA confidence levels, and the associated characterisation of Feared Events
- Consolidation of GSS Receiver Output Quality (i.e. multipath, interference and receiver noise) for the different Galileo Signal In Space frequencies
- Tuning of performances taking into account space segment characteristics (e.g. On-board clocks, MEO environment, Inter Frequency Bias, etc)

Risk Mitigation: Incremental development logic

Galileo System Test Bed V1 Objectives

- GSTB V1 reduces the risk on the Galileo ground segment development through early experimentation with the Orbit Determination & Time Synchronisation and Integrity algorithms.
- Processing Facilities pre-developments are conducted based on realistic measurements from the GPS system
- Collaboration with the International GPS Service community and UTC Time Community established

GSTB-V1 Architecture

GSTB-V1 Sensor Stations Network

GSTB-V1 Experimentation

Areas of Experimentation

ODTS & SISA Performance Targets

	GMS REQUIREMENTS	E-OSPF Experimentation Target	Test Constraints
Predicted Clocks	GMSREQ-6483 65 cm	1.5 – 2ns (6 h prediction time, 67% percentile)	GPS Block IIR clocks
Predicted Orbits	Ranging Accuracy (67% percentile)	20 cm (6 h prediction time, 67% percentile)	
Restituted Clocks	GMSREQ-10746 0,3 ns (67% percentile)	Target: 0,3ns (67% percentile) not yet met [~ 0.5 ns]	GPS Block IIR clocks
Restituted Orbits	GMSREQ-10746 10 cm (67% percentile)	Target: 5cm (67% percentile) not yet met [10cm]	
SISA	GMSREQ-10765 85 cm	Target to be defined through experimentation	6 months a-priori ODTS statistics required

RMS range error at WUL for Block IIR satellites

4 GPS broadcast message • E-OSPF computed message 3.5 Location (m) з 2.5 at Worst User • 2 • 1.5 Range error 1 0.5 0 0 20 40 60 80 100 120 Message validity time (min)

RMS Range error at Worst User Location for Block IIR satellites

- Validity Time (2 hrs)
- Galileo Reqt: 65 cm

Integrity Performance Targets

	GMS REQUIREMENTS	E-IPF Performance Target at ERR	Test constrains
Broadcast SISMA	GMSREQ-10638 Nominal Broadcast SISMA lower than 70 cm. Assuming • Synchro. Noise: 0.7 nsec (rms) • Preprocessing range noise: 0.15 m (rms)	 Synchronisation noise Target: 2 nsec not yet met [~ 2.8 ns] Pre-processing Range noise Target: 1 m currently met [0.7 m] 	SISMA value characterised as a function of synchronisation and ranging noise (DoC unchanged)

- GMSREQ SISMA value not yet consolidated
- Synchronisation Error is at the moment the major issue to be addressed in SISMA performance

GPS Integrity Availability

 GPS Integrity using Broadcast Navigation Message is NOT available

- Higher availability of GPS integrity using GSTB-V1 generated Navigation Message
- 1 day observations from 30 Stations
- Estimation of the position error based on 360 sec samples

GPS* SISMA map

- Logarithmic scale Number stations: 26
- •The SISMA is always above 84cm

GPS* Synchronization and Preprocessing Range Errors

- The Synchronization Error (bounding standard deviation) is 2.8 nsec. [Exp. Target = 2nsec not yet met]
- The Range Error is 0.7 m. [Exp Target = 1m]

Timing Performance Targets

	GMS REQUIREMENTS	E-PTS Performance Target at ERR	Test duration constrains
Prediction of the E-GST vs TAI/UTC offset	GMSREQ-6340 E-GST –UTC < 50 ns with an uncertainty of 28 ns (95%)	E-GST –UTC < 1 μs with an uncertainty of 100 ns (95%)	2 months (due to BIPM data availability)
Stability of E-GST vs TAI/UTC	GMSREQ-6342 5.5 * 10 ⁻¹⁴ over 1 day	< 5 * 10 ⁻¹⁴ over 1 day	2 months (stability value to be provided accordingly)
Clock Stability Measurements	GMSREQ-1377 GMSREQ-6407 AHM and Cs Clocks specification	Adev @1s, up to 1 day AHM and Cs Clocks specification verification	10 days of data acquisition

 GSTB-V1 E-PTS E-GST vs TAI/UTC Requirements less stringent due to reuse of infrastructure and no TSP [1µs offset and 33 ns uncertainty] (extrapolation to 50 ns offset and 28 ns uncertainty by analysis)

Comparison of E-PTS clock with USN1

EPTS - USN1 (Linear trend removed)

- The constant offset and drift have been removed
 - The spike is due to
 rejected carrier phase
 measurements in preprocessing. The
 measurement include the
 error in the snapshot
 estimation of the ODTS
 process (around 0.2
 nsec), i.e. the EPTS
 clock is almost the same
 as USN1.

GSTB-V1 Core Products Access

GSTB-V1 Open System

Availability of Data

- FTP/Web-based access:
 - http://www.gstb-v1.esa.int/
- Physical Media DLT/DVD/DDS
- Core Products Format:
 - Standard Format (RINEX, SP3, etc) and
 - XML (XSLT and XSD on the web)
- Access to Core Products will be granted as soon as validation is completed (target: 16 March 2004)

Galileo System Test Bed V2 Objectives

- Secure Galileo Frequencies
- Test Payload technology in-orbit
- Provide experimental Signal-in-Space
- Characterize MEO radiation environment
- Schedule highly critical (launch date 17 October 2005)
- Risk Mitigation approach
 - GSTB-V2/A Surrey Satellite Technology Ltd
 - GSTB-V2/B Galileo Industries SA

GSTB-V2 / A

GSTB-V2 / B

Collaboration with IGS

Collaboration with IGS

- **GSTB-V1** would not exist without IGS:
 - IGS Stations usage
 - Reference Truth for Experimentation
- Collaboration with IGS needs to be continued:
 - GSTB-V1 Experimentation Results need to be shared with the scientific community ("friendly competition")
 - independent assessment of critical design parameters such as CoP, CoM, BDGD, etc
 - Establishment of RINEX format for Galileo is a priority
 - Support in the consolidation of Galileo Navigation Message Content
 - Integration of Galileo into IGS processing, starting with GSTB V2

