# Timing applications for GNSS \*\*\*

# IGS partnership with the BIPM

E. Felicitas Arias Gérard Petit Bureau International des Poids et Mesures Time section



- BIPM general mission
- Timing activities
  - International time scales: TAI, UTC
  - clocks in TAI
  - clock comparison in TAI, GNSS role
- IGS/BIPM
  - Pilot project (1998 2002)
  - contribution to the improvement of TAI
  - comparison of IGS and BIPM timing results



#### **Bureau International des Poids et Mesures**

- Ensure world-wide unification of physical measurements:
  - agreement on the definition and realization of units;
  - establishment of national standards of demonstrable international equivalence;
  - international harmonization of laws and regulations related to metrology.



# International time scales (atomic)

- TAI (International Atomic Time)
  - Unit is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom (second of the SI).
  - Uniform time scale.
  - High stability in the long term ( $0.6 \times 10^{-15}$ , ~ 40 days).
  - Accuracy conferred by using the reported measurements of the PFS. Relative departure of the duration of the TAI interval from the SI second (*d*) is 0.5 x 10<sup>-14</sup> to 1.0 x 10<sup>-14</sup> u = 0.2 x 10<sup>-14</sup>



# International time scales (atomic)

- UTC (Coordinated Universal Time)
  - Defined to fulfil mainly the need of a time scale somehow related to the rotation of the earth.
  - Conceptually identical to TAI but suffering from 1 second time steps (TAI - UTC = 32 s today).
  - UTC is the reference time scale for world wide time coordination.
  - UTC is calculated at the BIPM in concertation with the IERS on the basis of readings of clocks in the national laboratories.
  - Local realizations of UTC named UTC(k) are broadcast by time signals.



### TAI/UTC

- Calculated in differed time on the basis of monthly blocks of data.
- Clock data provided by the participating laboratories.
- Organisation of international time links for clock comparison.
- Appropriate methods of time transfer.
- Primary frequency standard measurements.
- Algorithm to elaborate a time scale which fulfils the required characteristics: stability in the long term and frequency accuracy.





# **Clocks participating in TAI**



- H masers
- Other

68% 16% 16%



#### **Clock weighting**



#### stability

- independent clocks,
- relative weights,
- upper limit to clock weights,
- weight of a clock remains constant on the 30 days of the interval of computation,
- iterative process based on the previous interval to predict the clock frequencies on the following interval (random walk frequency modulation...),
- weight determination based on 12 intervals of computation (one year)
  - deweighting (annual frequency variations, long term drifts),
  - detection of abnormal behavior



## Clock weights (stat.)

- 11% of clocks at  $\omega_{max}$ 
  - 14% are H-masers
  - 79% are HP5071A
- Over the H-masers
   10% are at ω<sub>max</sub>
- Over the HP5071A
  - 13% are at  $\omega_{\text{max}}$



### **Clock comparison in TAI**



- (several hundreds of ns uncertainty)

GPS C/A-code single-channel common-view

- (3-10 ns uncertainty)

- GPS C/A-code multi-channel common view
  - (ns uncertainty)
- TWSTFT
- GPSP3







# IGS products in TAI

- Single-frequency GPS C/A links in TAI are corrected by using:
  - Precise IGS orbits
  - Ionospheric maps from CODE
- Schedule for (monthly) Circular T
  - standard dates are MJD ending by 4 / 9
  - deadline for data submission of month M is 5th M+1
  - process of calculation starts (hopefully) on 6th M+1
- Latency is essential for the choice of IGS products



#### Access to other time scales

#### • GPS Time

- UTC-GPS Time, Circular T, every day at 0hUTC

- GLONASS Time (same)
- Future:
  - GALILEO Time
  - IGS Time

# BIPM differential calibrations of GPS time equipment

Uncertainty 3 ns (1  $\sigma$ )

• In 2001-2004 campaigns were carried out

•West and central Europe, Asia-Pacific region, North America

 About 20 laboratories out of the 50 that participate in TAI have been calibrated in the period



### IGS/BIPM Pilot Project (1998-2002)

- Goal: developing operational strategies to exploit geodetic GPS methods for improved time and frequency comparisons.
- IGS: dual frequency carrier-phase based geodetic techniques.
- BIPM: time and frequency transfer by singlefrequency GPS C/A common views and TWSTFT.
- IGS+BIPM: global time and frequency comparisons at the sub-ns level by using GPS carrier phase and geodetic techniques.



# Actions

- Hardware requirements (1-pps input in timing receivers)
- Software requirements (BIPM time transfer format CGGTTS) --> P. Defraigne
- Calibration of receivers (Ashtech Z12-T, ...)
  --> G. Petit
- Integration of time laboratories into the IGS network
  --> next slide



#### **IGS stations located at BIPM time laboratories**

| IGS Site | Time Lab | GPS Receiver     | Freq. Std. | City                      |
|----------|----------|------------------|------------|---------------------------|
| AMC2     | AMC *    | AOA SNR-12 ACT   | H-maser    | Colorado Springs, CO, USA |
| BOR1     | AOS      | AOA TurboRogue   | cesium     | Borowiec, Poland          |
| BRUS     | ORB      | Ashtech Z-XII3T  | H-maser    | Brussels, Belgium         |
| KGN0     | CRL *    | Ashtech Z-XII3   | cesium     | Koganei, Japan            |
| MDVO     | IMVP     | Trimble 4000SSE  | H-maser    | Mendeleevo, Russia        |
| MIZU     | NAO      | AOA Benchmark    | cesium     | Mizusawa, Japan           |
| NPLD     | NPL *    | Ashtech Z-XII3T  | H-maser    | Teddington, UK            |
| NRC1     | NRC *    | AOA SNR-12 ACT   | H-maser    | Ottawa, Canada            |
| NRC2     | NRC *    | AOA SNR-8100 ACT | H-maser    | Ottawa, Canada            |
| OBE2     | DLR      | AOA SNR-8000 ACT | rubidium   | Oberpfaffenhofen, Germany |
| OPMT     | OP       | Ashtech Z-XII3T  | H-maser    | Paris, France             |
| PENC     | SGO      | Trimble 4000SSE  | rubidium   | Penc, Hungary             |
| PTBB     | PTB *    | AOA TurboRogue   | H-maser    | Braunschweig, Germany     |
| SFER     | ROA *    | Trimble 4000SSI  | cesium     | San Fernando, Spain       |
| SPT0     | SP       | JPS Legacy       | cesium     | Boras, Sweden             |
| TLSE     | CNES     | AOA TurboRogue   | cesium     | Toulouse, France          |
| TWTF     | TL *     | Ashtech Z-XII3T  | cesium     | Taoyuan, Taiwan           |
| USNO     | USNO *   | AOA SNR-12 ACT   | H-maser    | Washington, DC, USA       |
| WTZA     | IFAG     | Ashtech Z-XII3T  | H-maser    | Wettzell, Germany         |
| WTZR     | IFAG     | AOA SNR-8000 ACT | H-maser    | Wettzell, Germany         |

• participates in two-way satellite time transfer (TWSTT) operations



#### Use of GPS dual-frequency P code observations in TAI

- TAI P3 pilot experiment (April 2002)
- Calibrated Ashtech Z12T receivers
- Data since mid-2002
- 7 TAI P3 links compared to other techniques in TAI – TWSTFT, GPS C/A SC
- Long term time stability of order 1.0 ns (1  $\sigma$ )
- Start introducing TAI P3 links in TAI (July 2003)
  - DLR/PTB
  - IFAG/PTB
  - ORB/PTB



#### **GPS P3 links**

- Long term instability of GPS P3 links is of order 1.0 ns (1σ)
- Equivalent to the performance of TW links, at least twice better than GPS C/A links



| Laboratory     | GPS P3 equipment | TW equipment   | GPS C/A equipment      |
|----------------|------------------|----------------|------------------------|
| IEN            | Ashtech Z12T     | MITREX 2500A   | 3S Nav. GNSS-300T (MC) |
| BNM/SYRTE (OP) | Ashtech Z12T     |                | NBS TTR5 (SC)          |
| PTB            | Ashtech Z12T     | TimeTech/SATRE | AOA TTR5 (SC)          |
| USNO           | Ashtech Z12T     | MITREX 2500    | AOS SRC TTS-2 (MC)     |
| NRC            | Ashtech Z12T     |                | (SC)                   |
| CRL            | Ashtech Z12T     | AOA/Atlantis   | 3S Nav. R-100 (MC)     |
|                |                  |                | AOA TTR6 (SC)          |
| NMIJ           | Ashtech Z12T     | AOA/Atlantis   | AOA TTR6 (SC)          |
| TL             | Ashtech Z12T     | AOA/Atlantis   | AOA (SC)               |

| Link     | Distance | Techniques     |
|----------|----------|----------------|
| IEN-PTB  | 800 km   | P3, TW, C/A SC |
| OP-PTB   | 700 km   | P3, C/A SC     |
| CRL-PTB  | 8300 km  | P3, C/A SC     |
| USNO-PTB | 6300 km  | P3, TW         |
| NRC-USNO | 700 km   | P3, C/A SC     |
| NMIJ-CRL | 70 km    | P3, TW, C/A SC |
| TL-CRL   | 2100 km  | P3, TW, C/A SC |

















#### Links to other organizations



IAU WG on RCMAM



IERS Conventions Product Centre, with USNO



IGS WG on Clock Products



Sector member ITU-R



AIG - UGGI







▲ P3-C/A SC: RMS=2.2 ns ◆ : RMS=1.4 ns ■ : RMS=1.4 ns



#### UTC(IEN) - UTC(PTB): 2002/10-2003/11

▲ P3-TW: RMS =1.0 ns ◆ : RMS =1.1 ns ■ : RMS =1.2 ns





