

Improving IGS Timescale Stability and Tracking of UTC

K. Senior, J. Ray U.S. Naval Research Laboratory (NRL)

2004 IGS Workshop & Symposium Bern, Switzerland

Status of IGS Clock Products

- Sat clocks+ orbits (Final & Rapid) provide autonomous PPP at few cm level
- Station clock comparisons show accuracies ranging from 120ps to ~ 1ns (*Metrologia 2003*)
- Finals densification much improved (e.g., CODE & GFZ + new MIT)
- Rapids were previously most robust; fragile due to USNO/CODE dropouts
- Estimates referenced to IGS timescales have shown to be useful for diagnosing station problems.

Needed/Expected Improvements in IGS Clock Products

- Continued densification, now particularly with Rapids.
 - H-Masers + timing lab stations critical
- Timescale Improvements
- Station operators could improve local clock performance significantly in almost all cases
 - using clock estimates (referenced to IGS timescales) as diagnostic tool,
 - thermally isolating receiver, phase-stabilized cabling, & other known problems.

Clock "Fiducial" Stations

Primary (Hm or timing lab)

Secondary (Cs or Rb not at timing lab)

ALGO	AMC2*	BOR1*	BREW	BRUS*	AREQ	BAHR	BAN2	CAGZ	CHUR
(HM),	(HM),	(Cs),	(HM),	(HM),	(Rb),	(Cs),	(Rb),	(Cs),	(Rb),
DRAO	FAIR	FORT	GODE	GODZ	DAEJ	DARW	DWH1	GMAS	GRAZ
(HM),	(HM),	(HM),	(HM),	(HM),	(Cs),	(Rb),	(Cs),	(Cs),	(Rb),
GOL2	HOB2	IENG*	IRKJ	IRKT	HARB	HERS	HLFX	JOZ2	JOZE
(HM),	(HM),	(Cs),	(HM),	(HM),	(Cs),	(Rb),	(Rb),	(Rb),	(Rb),
KGN0* (Cs),	KHAJ	KOKB	MAD2	MAT1	JPLM	KERG	KIRU	KOUR	LPGS
	(HM),	(HM),	(HM),	(HM),	(Rb),	(Cs),	(Cs),	(Cs),	(Rb),
MATE	MDVJ*	MDVO	MEDI	METS	MAR6	MAS1	MCM4	OBET	PERT
(HM),	(HM),	(HM),	(HM),	(HM),	(Rb),	(Cs),	(Rb),	(Cs),	(Cs),
MIZU* (Cs),	NLIB	NNOR	NPLD*	NRC1*	PRDS	QAQ1	RIOG	SCH2	STR1
	(HM),	(HM),	(HM),	(HM),	(Cs),	(Rb),	(Rb),	(Rb),	(Cs),
NYA1	NYAL	OBE2*	ONSA	OPMT*	SUTM	SYOG	THTI	THU2	THU3
(HM),	(HM),	(Rb),	(HM),	(HM),	(Rb),	(Cs),	(Rb),	(Rb),	(Rb),
PIE1	PTBB*	SFER*	SPT0	STJO	TNML	TROM	TSKB	VILL	WHIT
(HM),	(Cs),	(Cs),	(HM),	(HM),	(Rb),	(Rb),	(Cs),	(Cs),	(Rb),
TID1	TID2	TIDB	TLSE*	TWTF*	WROC	WUHN	YAKT	YAR1	YAR2
(HM),	(HM),	(HM),	(Cs),	(Cs),	(Rb),	(Cs),	(Cs),	(Cs),	(Rb)
USN1* (HM),	USNO* (HM),	USUD (HM),	WES2 (HM),	WSRT (HM),					
WTZA* (HM),	WTZR* (HM),	YEBE (HM),	YELL (HM)						

List updated daily at https://timescales.nrl.navy.mil/

IGS Stations Co-located at Timing Labs

IGS Site	Time Lab	GPS Receiver	Freq. Std.	City
AMC2	<u>AMC</u> *	AOA SNR-12 ACT	H-maser	Colorado Springs, CO, USA
BOR1	AOS	AOA TurboRogue	cesium	Borowiec, Poland
BRUS	ORB	Ashtech Z-XII3T	H-maser	Brussels, Belgium
IENG	<u>IEN</u>	Ashtech Z-XII3T	Cesium	Torino, Italy
KGN0	<u>CRL</u> *	Ashtech Z-XII3	cesium	Koganei, Japan
MDVJ	VNIIM	Trimble 4000SSE	H-maser	Mendeleevo, Russia
MIZU	NAO	AOA Benchmark	cesium	Mizusawa, Japan
<u>NPLD</u>	<u>NPL</u> *	Ashtech Z-XII3T	H-maser	Teddington, UK
NRC1	<u>NRC</u> *	AOA SNR-12 ACT	H-maser	Ottawa, Canada
NRC2	<u>NRC</u> *	AOA SNR-8100 ACT	H-maser	Ottawa, Canada
OBE2	DLR	AOA SNR-8000 ACT	rubidium	Oberpfaffenhofen, Germany
OPMT	<u>OP</u>	Ashtech Z-XII3T	H-maser	Paris, France
PENC	<u>SGO</u>	Trimble 4000SSE	rubidium	Penc, Hungary
PTBB	<u>PTB</u> *	AOA TurboRogue	H-maser	Braunschweig, Germany
SFER	ROA *	Trimble 4000SSI	cesium	San Fernando, Spain
SPT0	SP	JPS Legacy	cesium	Boras, Sweden
TLSE	<u>CNES</u>	AOA TurboRogue	cesium	Toulouse, France
TWTF	TL *	Ashtech Z-XII3T	cesium	Taoyuan, Taiwan
USNO	USNO *	AOA SNR-12 ACT	H-maser	Washington, DC, USA
<u>WTZA</u>	IFAG	Ashtech Z-XII3T	H-maser	Wettzell, Germany
WTZR	IFAG	AOA SNR-8000 ACT	H-maser	Wettzell, Germany

IGS Time Scale

- Internal IGS time scale implemented using a weighted combination of included frequency standards
- 1 d stability improved from ~2 x 10⁻¹⁴ (when aligned to GPS time before) to ~1 x 10⁻¹⁵ now
- Steered to GPS time in the long term (~30 to 40 d)

GPST & USNO vs. UTC

GPST & USNO vs. UTC GPST USNO 10 5 0 Nanoseconds -5 -10 -15 -20 52400 52500 52600 52700 52800 52900 53000

MJD

 B_{i}

Station Calibration Bias

To relate IGS time scale to UTC, need to know prediction of $(UTC_i - UTC)$ and station timing bias:

 $CLK_i = GPS$ geodetic clock estimates at lab *i* UTC_i = local realization of UTC for lab *i*

STATION CALIBRATION BIAS: includes internal GPS receiver/antenna calibration bias & intra-lab offset to UTC_i

From IGS clock products & BIPM Circular T, can compute:

 $CLK_i - UTC_i$

$$B'_{i} = (CLK_{i} - GPST)_{IGS} - (UTC - GPST)_{T} + (UTC - UTC_{i})_{T}$$

= $(CLK_{i} - UTC_{i}) + (GPST_{T} - GPST_{IGS})$
= $B_{i} + \Delta GPST$ small corrections due to different methods of observing GPS time

New Steering Reference

Using LQG alg., steer to zero the quanity:

3-state LQG currently used, but 2-state may suffice

 $B'_{\rm BRUS}(t)$

 $B_{\rm KGN0}'(t)$

 $B'_{\rm NPLD}(t)$

STATI		#)/04-00						
ON	IVIJD	# values		В	i	BIVKIVIS		
	RANGE	Rapid	Final	Rapid	Final	Rapid	Final	
AMC2	52117-52437	299	42	-451.40	-452.38	2.87	1.47	
	52480-52729	247	230	2.71	4.26	2.69	2.60	
BOR1	51854-52020	60	54	-2955.91	-2955.26	11.94	12.68	
	52251-52296	34	45	-353.05	-352.91	2.75	2.02	
	52504-52531	26	28	31.72	31.15	3.31	2.62	
	52611-52678	56	60	120.79	121.23	3.98	3.51	
	52693-52724	32	31	-25.63	-25.60	2.63	2.18	
BRUS	52213-52374	136	4	454.83	452.77	3.46	0.30	
	52420-52729	292	238	585.83	586.15	2.59	2.42	
KGN0	52421-52729	168	103	-28.95	-29.26	3.44	2.68	
NPLD	52133-52569	376	112	-8075.90	-8075.78	2.82	3.33	
TWTF	52316-52347	0	16		294.70		7.34	
	52400-52453	41	34	298.87	298.93	4.91	6.13	
	52483-52562	68	79	381242.55	381243.81	4.64	3.66	
	52563-52729	160	166	288.45	289.84	7.69	9.05	
USN1	52467-52729	95	30	0.76	1.65	2.24	1.89	
USNO	51922-51986	60	65	-69.71	-69.69	2.43	2.52	
	52069-52129	61	61	619.04	619.53	3.25	3.97	
	52131-52158	26	28	-157.25	-157.72	2.27	2.36	
	52180-52256	72	73	-69.07	-68.83	2.24	1.93	
	52260-52339	74	80	5.91	5.89	1.55	1.38	
	52360-52529	159	164	85287.15	85287.19	1.62	1.56	
	52532-52729	185	187	639.92	639.59	3.33	2.69	

Determining ΔGPST

Can separate ΔGPST into time-varying & quasistatic components:

 $B_i \doteq B'_i - \Delta GPST$

$$= B'_i - \Delta \text{GPST}(t) - \left\langle \Delta \text{GPST} \right\rangle + \dots$$

day-to-day variations in IGS clock alignment to GPS time & differences in satellites used by IGS & BIPM each day average difference in BIPM & IGS measurement of GPS time due to different satellite antenna offset values ~ -1 ns (-0.92 to -1.3 ns over last few years)

lab-specific errors in local calibration & time transfer to BIPM

• $\Delta GPST(t)$ causes common-mode variations in B_i which can be used to estimate effect when multiple labs are available

ΔGPST Adjustments

STATI ON	MJD	# Values		B'i		B' _i WRMS		B _i		B _i WRMS	
	RANGE	Rapid	Final	Rapid	Final	Rapid	Final				
AMC2	52117-52437	299	42	-451.40	-452.38	2.87	1.47	-450.72	-452.02	1.93	0.75
	52480-52729	247	230	2.71	4.26	2.69	2.60	4.19	5.10	1.39	1.41
BOR1	51854-52020	60	54	-2955.91	-2955.26	11.94	12.68	-2955.00	-2954.49	11.77	12.59
	52251-52296	34	45	-353.05	-352.91	2.75	2.02	-353.19	-353.19	1.49	0.98
	52504-52531	26	28	31.72	31.15	3.31	2.62	34.40	33.77	2.88	2.33
	52611-52678	56	60	120.79	121.23	3.98	3.51	120.32	121.26	1.92	1.72
	52693-52724	32	31	-25.63	-25.60	2.63	2.18	-25.69	-25.73	1.55	1.77
BRUS	52213-52374	136	4	454.83	452.77	3.46	0.30	454.42	453.68	1.31	0.06
	52420-52729	292	238	585.83	586.15	2.59	2.42	585.81	586.89	1.24	1.43
KGN0	52421-52729	168	103	-28.95	-29.26	3.44	2.68	-27.92	-28.31	2.64	2.44
NPLD	52133-52569	376	112	-8075.90	-8075.78	2.82	3.33	-8074.74	-8074.25	1.35	2.33
TWTF	52316-52347	0	16		294.70		7.34		294.60		7.11
	52400-52453	41	34	298.87	298.93	4.91	6.13	301.34	301.33	4.91	5.35
	52483-52562	68	79	381242.55	381243.81	4.64	3.66	381245.16	381246.48	4.15	3.47
	52563-52729	160	166	288.45	289.84	7.69	9.05	288.27	290.12	7.42	8.60
USN1	52467-52729	95	30	0.76	1.65	2.24	1.89	1.40	3.04	0.76	1.03
USNO	51922-51986	60	65	-69.71	-69.69	2.43	2.52	-68.78	-68.85	2.15	2.39
	52069-52129	61	61	619.04	619.53	3.25	3.97	620.04	620.53	3.25	3.97
	52131-52158	26	28	-157.25	-157.72	2.27	2.36	-155.08	-156.46	0.30	2.24
	52180-52256	72	73	-69.07	-68.83	2.24	1.93	-68.30	-67.80	0.91	1.62
	52260-52339	74	80	5.91	5.89	1.55	1.38	7.24	6.75	0.45	1.01
	52360-52529	159	164	85287.15	85287.19	1.62	1.56	85288.65	85288.68	0.83	1.39
	52532-52729	185	187	639.92	639.59	3.33	2.69	641.59	641.72	2.01	1.22

Conclusions

- Demonstrated an *in situ* method to transfer lab calibration to colocated IGS geodetic receiver system
 - Requires no cable, connector, or configuration changes
 - Precision (RMS) good to ~1 ns
 - IGS Rapid & Final results consistent to <~1 ns
- Accuracy compared to absolute instrumental calibration:
 - AMC2 differences -- +4.2 ns (Rapids), +5.1 ns (Finals)
 - USN1 differences -- +1.4 ns (Rapids), +3.0 ns (Finals)
- Technique can be applied to continuously monitor intra-lab calibration stability
- Being used to improve steering of IGS time scales w.r.t. UTC (~EFTF April, 2004)