

The effect of the second order GPS ionospheric correction on receiver positions

Sharon Kedar, George Hajj, *Brian Wilson*, Mike Heflin Jet Propulsion Laboratory

California Institute of Technology

Kedar, S., G. A. Hajj, B. D. Wilson, and M. B. Heflin, The effect of the second order GPS ionospheric correction on receiver positions, *Geophys. Res. Lett.*, VOL. 30, NO. 16, 2003.

Bassiri, S., and G. A. Hajj, Higher-order ionospheric effects on the global positioning systems observables and means of modeling them, *Manuscripta Geodetica*, 18, 280–289, 1993.

Observables

$$P_i = \rho + \frac{q}{f_i^2} + \frac{s}{f_i^3} + \dots$$

$$L_i = \rho + n_i \lambda_i + \frac{q}{f_i^2} - \frac{1}{2} \frac{s}{f_i^3} + \dots$$

 ρ = pseudorange (+receiver clock +wet troposphere delay)

 f_i = carrier frequency (f_1 = 1.575Ghz; f_2 = 1.227Ghz)

 λ_i = carrier wavelength (λ_1 = 19.0cm; λ_2 = 24.4cm)

$$q = 40.3 \times TEC$$

$$TEC = \int_{L} N \cdot dl$$
 $TEC = Total electron content$ $N = Ionospheric electron density$ $L = GPS signal path$

Faraday Rotation

$$s = \int f_g \cdot f_p^2 \cdot \cos \theta_B dl = 7527 \cdot c \int N \cdot B_0 \cos \theta_B dl$$

 f_p = plasma frequency

 f_g = gyro frequency

 B_0 = Earth $\tilde{\Theta}$ magnetic field

 $\theta_{\!\scriptscriptstyle B}$ = angle between signal propagation vector and magnetic field

c = speed of light

Approximations (I)

Co-centric, tilted magnetic dipole

Approximations (II)

Calculation (I)

Calculation (II)

Diurnal Variation

- Slant TEC values, 2nd-order ionospheric correction (to LC), and station position & clock correction at COCO (W. Australia, lat: 12.19), estimated every 5 minutes during April 2, 2000.
- Note strong correlation between station height correction dH and station clock correction d(Clock).
- dN < 0 (southward), dE = 0.
- Change in station latitude as much as 1 cm at peak TEC time.

Effect on station positions

Systematic error in daily station positions estimate

Interpretation

- Station position derived from phase range depicted by the intersection of two range arcs.
- k parallel to the magnetic field B0 implies LC phase range is delayed.
 k anti-parallel to B0 implies opposite.
- Not accounting for 2nd-order term when parallel (anti-) implies actual range is over (under) estimated.
- Geometrical intersection of corrected phase ranges shift station position accordingly.
- Position correction (red) is projected onto radial and horizontal planes.

Effect on station positions

Systematic error in daily station positions estimate

Seasonal variation

- Compare time series of archived station positions to 2nd-order corrected positions.
- Average over 3 mag. equatorial sites (BAHR, COCO, GALA) to reduce non-coherent variations (multipath, tropo).
- When a linear trend removed, correlation between positions and correction observed.
- Semiannual cycle corresponds to high TEC values at equinox.
- Correlation indicates significant portion of semiannual latitude variation is due to imperfect elimination of the ionospheric effects.

Conclusions

- The effect of the 2nd-order ionospheric term is likely to improve global receiver positions repeatability.
- Not correcting for 2nd-order ionospheric effect introduces a seasonal variation of several mm into station positions.
- The 2nd-order correction may provide an explanation for small biases in GPS-derived geo-center estimate.
 - •3 mm Z-component bias relative to SLR & VLBI
 - •4 mm relative to ITRF2000
- A diurnal variation in station latitude and height of the order of 1 cm is introduced into the kinematic station position, if the 2nd-order correction is not applied.

Future Work

- Quantify the effects of the 2nd-order ionospheric on GPS orbit estimation.
- Introduce of a more accurate model of the Earth' magnetic field (such as the International Geomagnetic Reference Field).
- Use an ionospheric model which takes into account the vertical spread of ionospheric density with altitude.
- Incorporate the 2nd-order correction into GIPSY.

• References:

Kedar, S., G. A. Hajj, B. D. Wilson, and M. B. Heflin, The effect of the second order GPS ionospheric correction on receiver positions, *Geophys. Res. Lett.*, VOL. 30, NO. 16, 2003.

Bassiri, S., and G. A. Hajj, Higher-order ionospheric effects on the global positioning systems observables and means of modeling them, *Manuscripta Geodetica*, 18, 280–289, 1993.