Tests of IGS Reference Frame Stability

Zuheir Altamimi Institut Géographique National, France

Jim Ray Bureau International des Poids et Mesures & National Geodetic Survey

Study of IGS TRF long-term stability on:

- Frame Parameters: Origin, Scale, Orientation
- Polar Motion
- When:
- changing the RS from 54 to 99
- using different sets of RS, but still globally distributed

Analyzed Data: Weekly IGS combined SINEX files over 1999-2003

- Impact of station discontinuities on Polar Motion
- Re-open the question about GPS Geocenter and TRF scale

IGS 2004 Workshop, 01 March 2004, Berne, Switzerland

TRF & EOP time series Combination CATREF Software

INPUT: X(t), **EOP(t)** in daily/weekly/monthly SINEX files

OUTPUT: $X(t_0)$, \dot{X} , **EOP(t)**, $(\underline{T_x, T_y, T_z}, D, R_x, R_y, R_z)$ **Geocenter**

$$\begin{cases} X_{s}^{i} = X_{itrf}^{i} + (t_{s}^{i} - t_{0})\dot{X}_{itrf}^{i} + T_{k} + D_{k}X_{itrf}^{i} + R_{k}X_{itrf}^{i} \\ + (t_{s}^{i} - t_{k})\left[\dot{T}_{k} + \dot{D}_{k}X_{itrf}^{i} + \dot{R}_{k}X_{itrf}^{i}\right] \\ \dot{X}_{s}^{i} = \dot{X}_{itrf}^{i} + \dot{T}_{k} + \dot{D}_{k}X_{itrf}^{i} + \dot{R}_{k}X_{itrf}^{i} \end{cases}$$

$$\begin{cases} x_s^p = x^p + R2_k \\ y_s^p = y^p + R1_k \\ UT_s = UT - \frac{1}{f}R3_k \\ \dot{x}_s^p = \dot{x}^p + \dot{R}2_k \\ \dot{y}_s^p = \dot{y}^p + \dot{R}1_k \\ LOD_s = LOD + \frac{\Lambda_0}{f}\dot{R}3_k \end{cases}$$

- Matching common parameters at UT noon
- Propagate at UT noon if rates are available
- EOP's follow the adopted combined TRF

UT noon available ed TRF

Datum Definition

The combined TRF is aligned to **IGS00 using Minimum Constraints** equation applied over the 7 transformation parameters:

$$(A^{T}A)^{-1}A^{T}(X_{RS} - X_{c}) = 0$$

where A is a design matrix given by:

$$A = \begin{pmatrix} \dots \dots \dots \dots \dots \dots \\ 1 & 0 & 0 & x_0^i & 0 & z_0^i & -y_0^i \\ 0 & 1 & 0 & y_0^i & -z_0^i & 0 & x_0^i \\ 0 & 0 & 1 & z_0^i & y_0^i & -x_0^i & 0 \\ \dots \dots \dots \dots \dots \dots \end{pmatrix}$$

and x_0^i , y_0^i , z_0^i are approximate station positions.

99 Reference Stations Set

Using IGS00 RS, 10 sets were selected, but still globally distributed:

- 4 sets with \approx 25 stations each
- 6 sets with \approx 50 stations each

Scale & origin differences when changing the IGS RS from 54 to 99

Polar Motion differences when changing the IGS RS from 54 to 99

4 Networks of \sim 25 stations

6 Networks of \sim 50 stations

Weekly WRMS

Impact of AREQ Earthquake on Polar Motion If pre & post station velocity is constrained to be the same

What about GPS Geocenter and TRF Scale ???

What about GPS Geocenter and TRF Scale ???

What about GPS Geocenter and TRF Scale ???

- Changing the RS set may produce changes up to:
 - -0.5 mm/yr in origin and scale rates
 - 10 $\mu \rm as/yr$ in Polar Motion
- The overall IGS TRF stability is at the 1 mm level
- The Weekly WRMS are:
 - -2 mm in horizontal
 - -5 mm in vertical
- Discontinuities should be handled with care (impact on EOP)
- GPS Geocenter and Scale estimates is still an open question

On TIGA TRF Application (See Poster by Wöppelmann et al.)