Impact of Absolute Antenna Phase Center Corrections on Global GPS Solutions

Ralf Schmid, Daniela Thaller, Peter Steigenberger, Markus Rothacher

Forschungseinrichtung Satellitengeodäsie (FESG), TU München

Manuela Krügel

Deutsches Geodätisches Forschungsinstitut (DGFI), München

Contents

- Satellite antennas (recent developments)
 - Block I phase center corrections
 - Azimuth-dependent PCVs
 - Horizontal offsets
- Comparison of global GPS solutions using absolute and relative PCVs respectively
 - Coordinates
 - Impact of azimuth-dependent receiver antenna PCVs
 - Impact of elevation cut-off angle
 - Troposphere parameters
 - Comparison with VLBI and WVR
- Conclusions

iap

Mean LC Pattern (9 Days in 1994)

Mean LC Pattern after Offset Correction

Azimuth-Dependent Satellite Antenna PCVs

Block I antenna (Czopek et al., 1993)

Antennas of all existent satellite blocks consist of

- 12 helical elements
- 2 concentric circles
- 4 elements forming the inner circle

Orientation with regard to the y-axis not always clear!

 \rightarrow Fourfold pattern should show up in the PCVs

iapg

Block IIR, Overall PCVs

DGFI TES

IGS Workshop & Symposium, March 1-5 2004, Berne

iapg

Block IIR PCVs after Offset Correction

ł

Azimuth-Dependent Satellite Antenna PCVs

Inner circle of Block II/IIA: elements unequally spaced?

Block II/IIA PCVs after Offset Correction

Block II/IIA, Horizontal Offsets

Comparison of Global Solutions

- IGS network (about 150 stations)
- Bernese GPS Software
- Daily solutions with estimation of all relevant global parameters (combined to two-week solutions for some of the tests)
- PCVs applied:
 - relative: official IGS set igs_01.pcv (receiver PCVs only!)
 - absolute: IGS test set pcv_abs_proposed11.tst (receiver and satellite PCVs)

Coordinate jumps

- Change in coordinates when switching from relative to absolute PCVs (two-week solution)
- Systematic effects due to different geocenter positions removed (several mm)
- Systematic change in height due to change of scale to ITRF (different for each AC)
- Absolute PCVs include azimuth-dependent receiver antenna corrections

iap

Impact of Azimuth-Dependent PCVs

Impact of Elevation Cut-Off Angle

Comparison of GPS & VLBI Troposphere

iapg

Comparison of GPS & WVR Troposphere

WVR: preliminary data set from Onsala

IGS Workshop & Symposium, March 1-5 2004, Berne

iapg

Conclusions

Satellite antennas:

- Comparison of Block II pattern from 1994 and 2002: $\pm\,3$ mm
- Azimuth-dependent PCVs: ±4 mm
- Significant differences in the horizontal offsets (center of mass variations due to maneuvers?)

Transition to absolute phase center corrections:

- Better agreement with tropospheric results from VLBI and WVR
- Coordinate jumps of up to 1 cm
- Results less dependent on the elevation cut-off angle
- A must when using data below 10° elevation!

