IERS Rigorous Inter-Technique Combination Implications to IGS

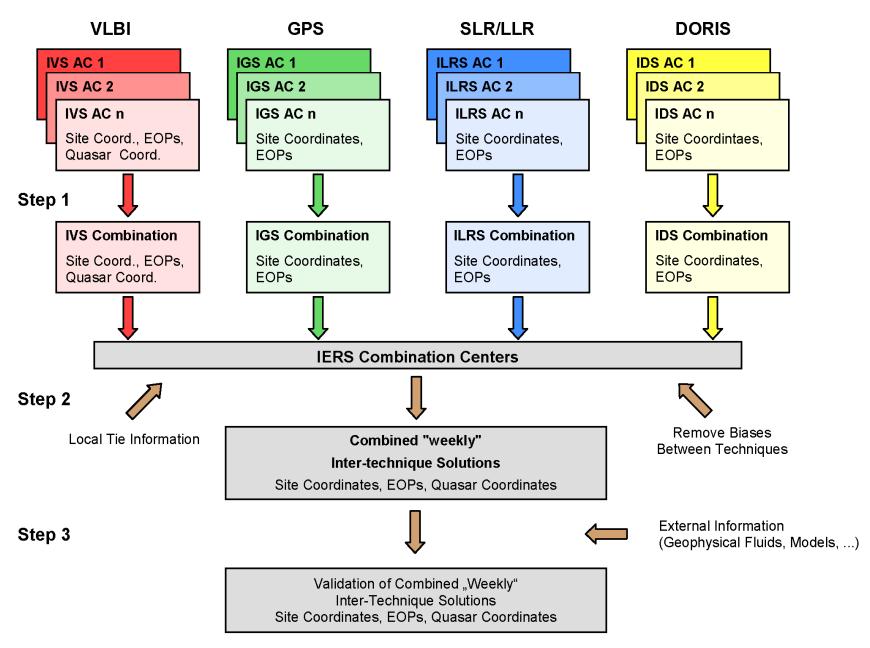
Markus Rothacher, Daniela Thaller, Ralf Schmid, Peter Steigenberger

Forschungseinrichtung Satellitengeodäsie, TU München (FESG)

IGS Workshop and Symposium 2004 March 1-5, 2004 Berne

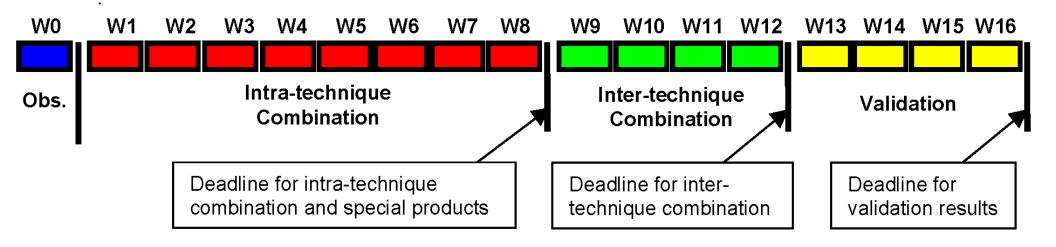
- IERS Combination Pilot Project (CPP) and IERS2005
- Reduction of Systematic Effects
- Reprocessing Capabilities
- Consistency of the IGS Products
- Conclusions

IERS Combination Pilot Project


Parameter space for a rigorous combination:

Parameter Type	VLBI	GPS/ GLON.	DORIS/ PRARE	SLR	LLR	Alti- metry
Quasar Coord. (ICRF)	Х					
Nutation	Х	(X)		(X)	Х	
Polar Motion	Х	Х	Х	Х	Х	
UT1	Х					
Length of Day (LOD)		Х	Х	Х	X	
Coord.+Veloc.(ITRF)	Х	Х	Х	Х	Х	(X)
Geocenter		Х	Х	Х		Х
Gravity Field		Х	Х	Х	(X)	Х
Orbits		Х	Х	Х	Х	Х
LEO Orbits		Х	Х	Х		Х
Ionosphere	Х	Х	Х			Х
Troposphere	Х	Х	Х			Х
Time/Freq.; Clocks	(X)	X		(X)		

IERS Combination Pilot Project: sub-space (red rectangle)


IGS Workshop and Symposium 2004, March 1-5, Berne

IERS Combination Pilot Project

IERS CPP: Submission Schedule

- Intra-technique combinations (weekly SINEX files) due 8 weeks after the observations → no problem for the IGS
- Inter-technique combinations (weekly SINEX files) due 12 weeks after the observations
- Validation of inter-technique combinations (report) due 16 weeks after the observations
- Special combined products due 8 weeks after the observations

IERS CPP: Proposals

Institution	Intra-Techn. (Step 1)	Inter-Techn. Comb. (Step 2)	Validation (Step 3)	Misc. Comb.
ILRS	SLR	—	_	—
IDS	DORIS	—		
IVS	VLBI	—	_	
IGS	GPS	—	_	
IGN/OP/BIPM		GPS,SLR,VLBI,DORIS	S,E,R	_
JPL		—	E	
DGFI	SLR	GPS,SLR,VLBI,DORIS	_	
FESG		(07/04)	_	E
USNO		—	E	E
JCET/GSFC	SLR	SLR, LEO GPS (07/04)	S,E (07/04)	S,E,O (12/04)
NCL	GPS,SLR	GPS,SLR	S,E	
GRGS/CNES.	<u> </u>	GPS,SLR/LLR,VLBI, DORIS: Obs.Level		—
CAS		GPS,SLR,VLBI,DORIS		

S: Site Coordinates; **E**: EOP; **R**: Radio sources; **O**: Orbits

IGS Workshop and Symposium 2004, March 1-5, Berne

IERS CPP: Timetable

January 26, 2004: February 22, 2004: February 27, 2004:	Dissemination of the Call for Participation Due date for proposals Information of participants about proposal acceptance
February 29, 2004:	Start of IERS Combination Pilot Project with GPS Week 1260 (first intra-technique combinations due 8 weeks later, i.e. end of April 2004; first inter-technique solutions due 12 weeks later, i.e., end of May).
April 25, 2004:	Meeting of IERS WG on Combination (before the EGU Meeting in Nice)
October 2004:	Progress Meeting of the IERS CPP at the IERS Workshop 2004
October 2005:	Evaluation of the CPP and discussions concerning the transitions to new IERS products

IERS2005: Plan

- "Integrated Earth orientation parameters, Radio sources, and Site coordinates 2005"
- IERS2005 = ITRF2005 + EOP2005 + ICRF2005 = first rigorously combined solution
- IERS2005 will be based on "weekly" SINEX files from all techniques (site coordinates, EOP, and quasar coordinates) over the entire history of their data acquisition
- This step will **complement the IERS CPP** for years already past
- The Technique Services (TS) should deliver time series as homogeneous as possible over a time span as long as possible (following IERS conventions)
- Individual AC solutions might be accepted if the corresponding TS agrees

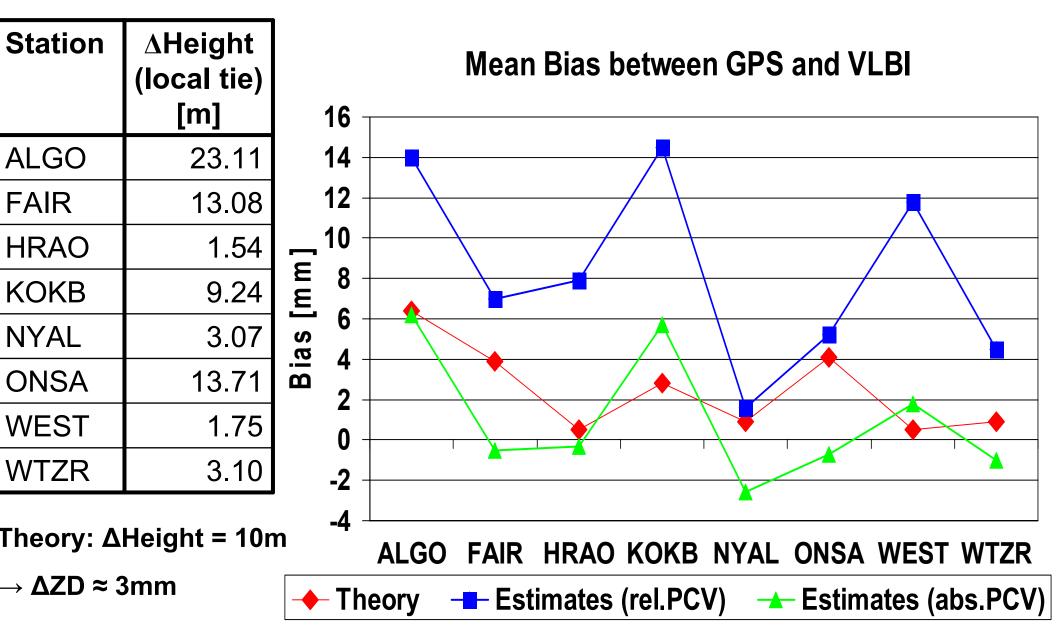
Draft Schedule:

- April, 2004: Call for submission of homogeneous weekly SINEX files
- July, 2004: Due date for submissions of weekly SINEX files
- March 2005: Submission of IERS2005 solutions by the Combination Centers (e.g, the ITRF CCs)
- August, 2005:IERS2005 solutions evaluated and compared;Presentation at the IAG Scientific Assembly 2005(Cairns, Australia)
- Ocotber 2005: After final refinements and documentation, official IERS2005 ready for IERS DB decision at IERS Workshop 2005 (Evaluation of IERS CPP)

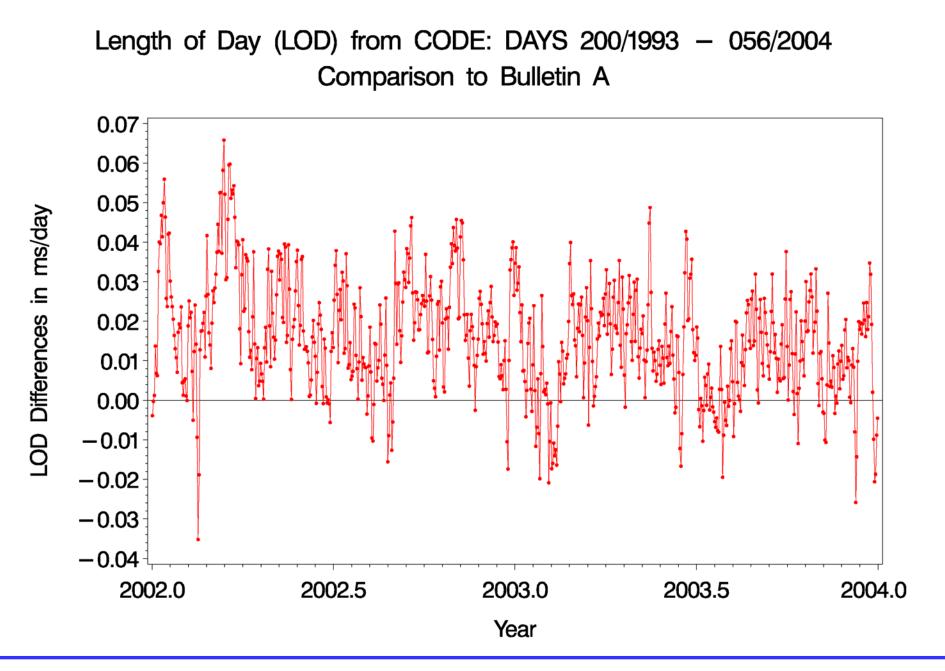
Systematic Effects

General Modeling Consistency (IERS Conventions 2003):

- Solid Earth and pole tides
- Subdaily ERP ocean tide model; IAU2000 precession/nutation
- Ocean loading, atmospheric loading
- Subdaily geocenter variations
- Troposphere mapping functions

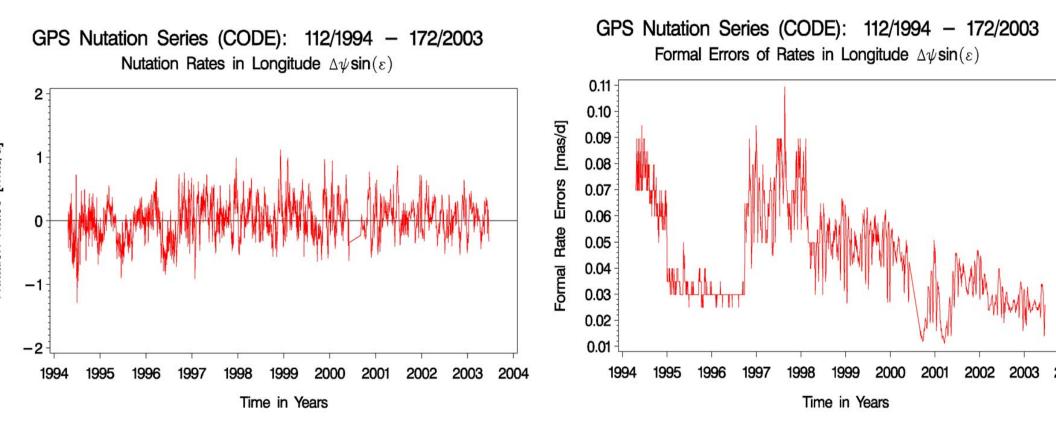

Antennas and Environment (easily reaching 1cm or more):

- Antenna phase center variations (PCV) of receiver antennas
- Antenna phase center variations of satellite antennas
- Multipath effects, environment (e.g. snow), equipment changes


Orbit modeling and parameterization:

- Systematic effects in geocenter variations; SLR-GPS orbit bias of 5cm
- Systematic effects in LOD and nutation rates

Comparison of GPS & VLBI Troposphere

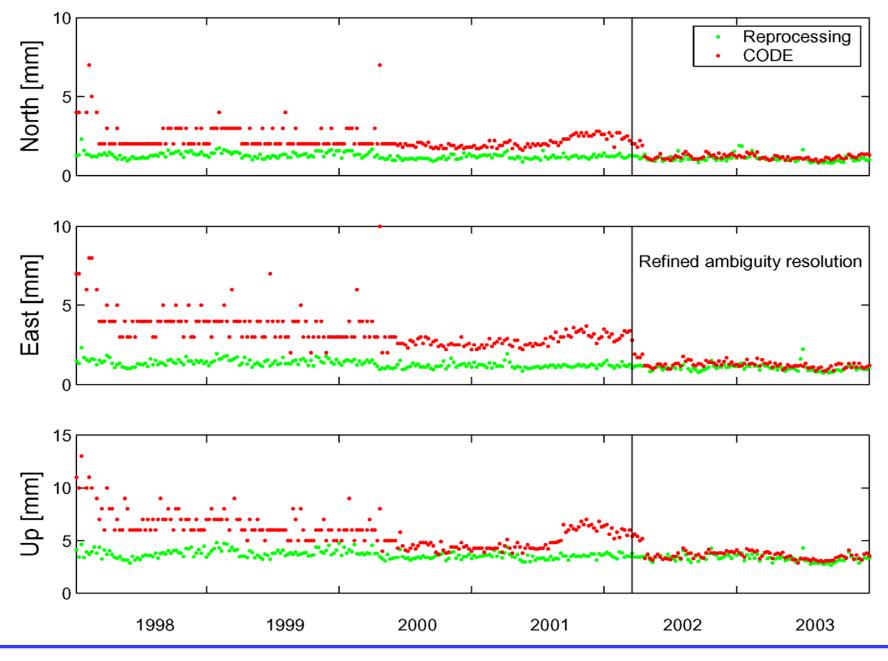

Systematic Effects: LOD

Systematic Effects: Nutation

GPS nutation rates in longitude:

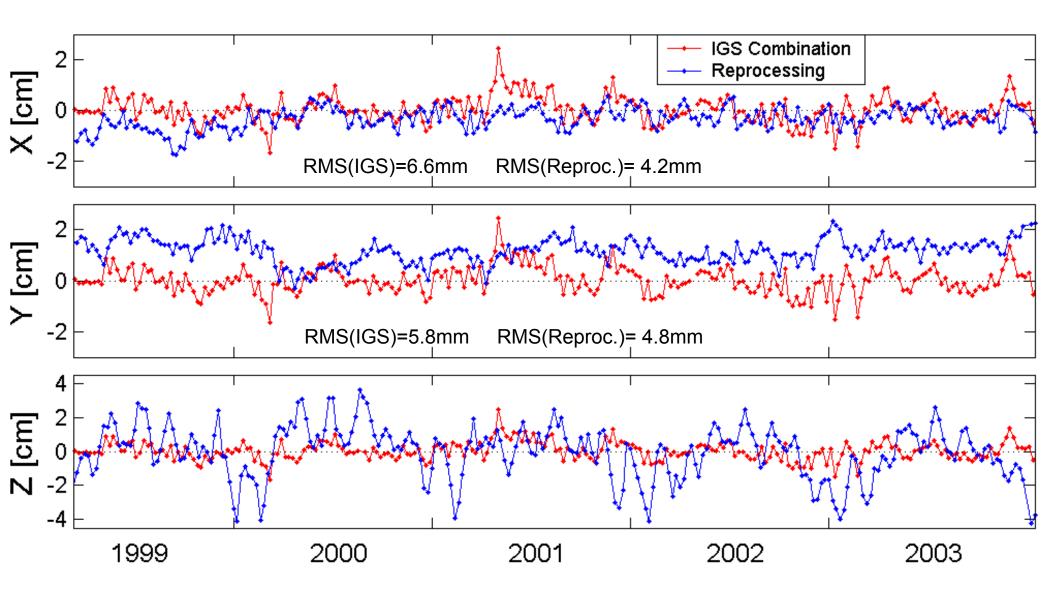
- systematic effects due to orbit modeling and parameterization
- visible in the values and the formal errors

Reduction of Systematic Effects

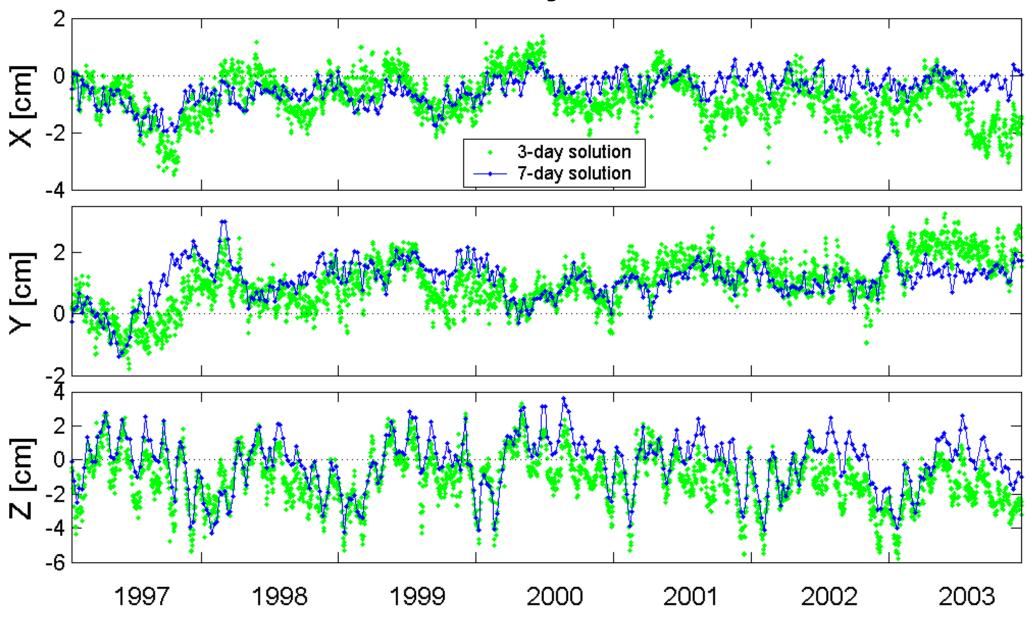

Statement 1: All systematic effects in the IGS results have to be eliminated or reduced to the extent possible for an IERS inter-technique combination to be successful.

- Not only internal consistency is important, but also absolute accuracy
- We should try to come as close as possible to the point, where ITRF coordinates are as consistent as the IGS GPS-only realization of the ITRF
- Each technique has its own systematic biases to care about

Importance of reprocessing:


- Inhomogeneous old time series with inconsistent modeling \rightarrow quality, consistency and long-term stability cannot be guaranteed
- Upgrades of solution series to **new standards** in modeling and parameterization are necessary (e.g. orbit parameterization)
- Improvements in processing strategies (e.g. ambiguity resolution) should be exploited for the entire GPS series
- Effects of reference frame changes cannot be fully removed (GPS week 1143: ITRF97 → ITRF2000)
- Examples: introduction of absolute antenna PCV or switch to IERS
 Conventions 2003 → reprocessing necessary
- IERS requires most up-to-date and consistent time series of products from all techniques (e.g., for IERS2005 products)

Reprocessing: Coordinate Repeatability



IGS Workshop and Symposium 2004, March 1-5, Berne

Reprocessing: Geocenter

Reprocessing: Geocenter 3- and 7-Day Solutions

Statement 2: Development of reprocessing capabilities must be an important goal for the IGS in the near future

- Most other techniques already have such capabilities (VLBI, SLR,DORIS, LLR)
- Some or most of the IGS Analysis Centers should reach a status, where they can periodically (e.g., once a year) reprocess the entire global IGS dataset
- Associate Analysis Centers might join the effort (?)
- IGS strategy required on how to improve products of the past (new submissions, new combinations, ...)

Consistency of AC and IGS Products

Troposphere Zenith Delays:

- Systematic and quite large differences between individual ACs
- Indicates inconsistencies in modeling
- Effects heavily correlated with the station height and the global scale
- Try to understand these effects, not just remove them
- Troposphere zenith delay product not consistent with core products

Geocenter, Scale and LOD:

- Quite large systematic offsets and variations exist in these quantities
- They make a rigorous combination difficult

Statement 3: Despite the consistency already reached, the IGS should to strive for further consistency between AC solutions and between IGS products

Conclusions

- IERS is on the way to a **rigorous combination** of its products (IERS CPP, IERS2005).
- **Systematic effects** have to be understood and removed to the extent possible before a successful combination can be done.
- **Reprocessing capabilities** are important for the IGS to contribute official consistent long-term series to the IERS.
- The consistency between ACs as well as the consistency between IGS products should further be improved.
- Work together with the IERS to obtain a set of rigorously combined IERS products, which will be beneficial to the IGS and all other space geodetic techniques.